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Foreword

By its nature, automatic program analysis is the art of finding adequate com-
promises. Originally, in the 1970s, program analysis aimed at deriving precon-
ditions for typically obviously correct optimizing program transformations.
Heuristics for loop optimizations were popular, which in particular concerned
the treatment of multi-dimensional arrays. The limits of these heuristics-
based approaches became apparent when looking at the combined effects of
optimizations – in particular in the context of concurrency. Since then, the
loss of confidence in optimizing compilers has been fought by semantics-based
methods that come with explicitly stated power and limitations.

A particularly natural and illustrative class of program analyses aims at
detecting program constants, i.e. occurrences of program expressions which
are guaranteed to evaluate to the same value in every run. This problem is
essentially as hard as program verification in its full generality, though there
are interesting subclasses which can be solved effectively or even efficiently.

Markus Müller-Olm investigates particularly interesting variations of such
classes which are characterized by varying strengths of interpretation and by
increasingly complex data and control structures. In particular, he considers
in detail three main classes of problems:

– The purely sequential situation, where his ideal theoretic treatment of poly-
nomial constants is really outstanding. It is a delight to follow the elegant
algebraic development!

– The treatment of copy constants for fork-join parallel programs. This turns
out to be very hard already in restricted settings like acyclic programs, and
becomes undecidable in the context of procedures.

– A variation of the second class, where he waives the usual atomicity prop-
erties during execution. At first sight it is really surprising that this dras-
tically simplifies the analysis problem. However, a closer look reveals that
the decrease in algorithmic complexity goes hand in hand with a decrease
in quality – as the waived atomicity is vital for a decent control of parallel
computation.

Markus Müller-Olm succeeds in significantly improving the known results
for the scenarios considered. However, what makes the book very special
is the impressive firework of elaborate methods and powerful techniques.



VI Foreword

Everybody working in the field will profit from passing from scenario to
scenario and experiencing Markus Müller-Olm’s mastership of choosing the
adequate means for each of the considered analysis problems: one leaves with
a deep understanding of the inherent underlying differences and in particular
of the complexity of modern programming concepts in terms of the hardness
of the implied analysis problem.

July 2006 Bernhard Steffen



Preface

Computer science is concerned with design of programs for a wide range of
purposes. We are, however, not done once a program is constructed. For vari-
ous reasons, programs need to be analyzed and processed after their construc-
tion. First of all, we usually write programs in high-level languages and before
we can execute them on a computer they must be translated into machine
code. In order to speed up computation or save memory, optimizing compilers
perform program transformations relying heavily on the results of program
analysis routines. Secondly, due to their ever-increasing complexity, programs
must be validated or verified in order to ensure that they serve their intended
purpose. Program analysis (in a broad sense) is concerned with techniques
that automatically determine run-time properties of given programs prior to
run-time. This includes flow analysis, type checking, abstract interpretation,
model checking, and similar areas.

By Rice’s theorem [79, 31], every non-trivial semantic question about pro-
grams in a universal programming language is undecidable. At first glance,
this seems to imply that automatic analysis of programs is impossible. How-
ever, computer scientists have found at least two ways out of this problem.
Firstly, we can use weaker formalisms than universal programming languages
for modeling systems such that interesting questions become decidable. Im-
portant examples are the many types of automata studied in automata the-
ory and Kripke structures (or labeled transition systems) considered in model
checking. Secondly, we can work with approximate analyses that do not al-
ways give a definite answer but may have weaker (but sound) outcomes.
Approximate analyses are widely used in optimizing compilers.

An interesting problem is to assess the precision of an approximate anal-
ysis. One approach is to consider an abstraction of programs or program
behavior that gives rise to weaker but sound information and to prove that
the analysis yields exact results with respect to this abstraction (cf. Fig. 0.1).
The loss of precision can then be attributed to and measured by the em-
ployed abstraction. This scheme has been used in the literature in a number
of scenarios [40, 86, 43, 87, 88, 24].

The scheme of Fig. 0.1 allows us to make meaningful statements on ap-
proximate analysis problems independently of specific algorithms: by devising
abstractions of programs, we obtain well-defined weakened analysis problems
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Fig. 0.1. Using an abstraction to assess the precision of an approximate analysis.

and we can classify these problems with the techniques of complexity and
recursion theory. The purpose of such research is twofold: on the theoretical
side, we gain insights on the trade-off between efficiency and precision in the
design of approximate analyses; on the practical side, we hope to uncover
potential for the construction of more precise (efficient) analysis algorithms.

In this monograph we study weakened versions of constant propagation.
The motivation for this choice is threefold. Firstly, the constant-propagation
problem is easy to understand and of obvious practical relevance. Hence,
uncovering potential for more precise constant-propagation routines is of
intrinsic interest. Secondly, there is a rich spectrum of natural weakened
constant-propagation problems. On the one hand, we can vary the set of al-
gebraic operators that are to be interpreted by the analysis. On the other
hand, we can study the resulting problems in different classes of programs
(sequential or parallel programs, with or without procedures, with or without
loops etc.). Finally, results for the constant-propagation problem can often
be generalized to other analysis questions. For instance, if as part of the ab-
straction we decide not to interpret algebraic operators at all, which leads to
a problem known as copy-constant detection, we are essentially faced with an-
alyzing transitive dependences in programs. Hence, results for copy-constant
detection can straightforwardly be adapted to other problems concerned with
transitive dependences, like faint-code elimination and program slicing.

In this monograph we combine techniques from different areas such as
linear algebra, computable ring theory, abstract interpretation, program ver-
ification, complexity theory, etc. in order to come to grips with the considered
variants of the constant-propagation problem. More generally, we believe that
combination of techniques is the key to further progress in automatic analy-
sis, and constant-propagation allows us to illustrate this point in a theoretical
study.

Let us briefly outline the main contributions of this monograph:

A hierarchy of constants in sequential programs. We explore the complex-
ity of constant-propagation for a three-dimensional taxonomy of constants
in sequential imperative programs that work on integer variables. The first
dimension restricts the set of interpreted integer expressions. The second di-
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mension distinguishes between must- and may-constants. May-constants ap-
pear in two variations: single- and multiple-valued. May-constants are closely
related to reachability. In the third dimension we distinguish between pro-
grams with and without loops. We succeed in classifying the complexity of the
problems almost completely (Chapter 2). Moreover, we develop (must-)con-
stant-propagation algorithms that interpret completely all integer operators
except for the division operators by using results from linear algebra and
computational ring theory (Chapter 3).
Limits for the analysis of parallel programs. We study propagation of copy
constants in parallel programs. Assuming that base statements execute atom-
ically, a standard assumption in the program verification and analysis lit-
erature, we show that copy-constant propagation is undecidable, PSPACE-
complete, and NP-complete if we consider programs with procedures, without
procedures, and without loops, respectively (Chapter 4). These results indi-
cate that it is very unlikely that recent results on efficient exact analysis of
parallel programs can be generalized to richer classes of dataflow problems.
Abandoning the atomic execution assumption. We then explore the conse-
quences of abandoning the atomic execution assumption for base statements
in parallel programs, which is the more realistic setup in practice (Chap-
ters 5 to 9). Surprisingly, it turns out that this makes copy-constant detection,
faint-code elimination and, more generally, analysis of transitive dependences
decidable for programs with procedures (Chapter 8) although it remains in-
tractable (NP-hard) (Chapter 9). In order to show decidability we develop a
precise abstract interpretation of sets of runs (program executions) (Chap-
ter 7). While the worst-case running time of the developed algorithms is
exponential in the number of global variables, it is polynomial in the other
parameters describing the program size. As well-designed parallel programs
communicate on a small number of global variables only, there is thus the
prospect of developing practically relevant algorithms by refining our tech-
niques.

These three contributions constitute essentially self-contained parts that
can be read independently of each other. Figure 0.2 shows the assignment of
the chapters to these parts and indicates dependences between the chapters.
For clarity, transitive relationships are omitted.

Throughout this monograph we assume that the reader is familiar with
the basic techniques and results from the theory of computational complexity
[72, 36], program analysis [70, 2, 30, 56], and abstract interpretation [14,
15]. A brief introduction to constraint-based program analysis is provided in
Appendix A.
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1. Introduction

Constant propagation is one of the most widely used optimizations in practice
(cf. [2, 30, 56]). Its goal is to replace expressions that always yield a unique
constant value at run-time by this value. This transformation can both speed
up execution and reduce code size by replacing a computation or memory
access by a load-constant instruction. Often constant propagation enables
powerful further program transformations. An example is branch elimination:
if the condition guarding a branch of a conditional can be identified as being
constantly false, the whole code in this branch is dynamically unreachable
and can be removed.

The term constant propagation is somewhat reminiscent of the technique
used in early compilers: copying the value of constants in programs (like in
x := 42) to the places where they are used. The associated analysis problem,
to identify expressions in the programs that are constant at run-time, is
more adequately called constant detection. However, in the literature the
term constant propagation is also used to denote the detection problem. We
use the term constant propagation in informal discussions but prefer the term
constant detection in more formal contexts.

Constant propagation is an instance of an automatic program analysis.
There are fundamental limitations to program analysis deriving from unde-
cidability. In particular, constant detection in full generality is undecidable.
Here is a simple reduction for a prototypic imperative programming language.
Suppose we are given a program P and assume that new is a variable not
appearing in P . Consider the little program:

read(new) ; P ;write(new) .

If P does not terminate, new can be replaced by any constant in the write
statement for trivial reasons, otherwise this transformation is unsound be-
cause the read-statement can read an arbitrary value. Thus, in order to solve
the constant detection problem in its most general form, we have to solve the
halting problem.

Similar games can be played in every universal programming language and
for almost any interesting analysis question. Hence, the best we can hope for
is approximate algorithms. An approximate analysis algorithm does not al-
ways give a definite answer. An approximate constant-detection algorithm,

M. Müller-Olm: Variations on Constants, LNCS 3800, pp. 1-11, 2006.
 Springer-Verlag Berlin Heidelberg 2006
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1

7
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2 3

4 5

z := x + y

y := 3
x := 2 x := 3

y := 2

Fig. 1.1. A constant not detected by standard constant propagation.

for instance, detects some but in general not all constants in a program. The
standard approach to constant propagation called simple constant propaga-
tion, for instance, does not detect that z is a constant of value 5 at node 7
in the flow graph in Fig. 1.1; cf. Appendix A. It is important that an ap-
proximate analysis algorithm only errs on one side and that this is taken
into account when the computed information is exploited. This is called the
soundness of the algorithm. We take soundness for granted in the discussion
that follows.

Undecidability of the halting problem implies that it is undecidable
whether a given program point can be reached in some execution of the pro-
gram or not. We have seen above by the example of constant detection that
this infects almost every analysis question. It is therefore common to abstract
guarded branching to non-deterministic branching in order to ban this fun-
damental cause of undecidability. This abstraction is built into the use of the
MOP-solution (see Appendix A) as the semantic reference point in dataflow
analysis. This is: instead of the ‘real’ executions, we take all executions into
account that at each branching point choose an arbitrary branch irrespective
of the guard. Clearly, this abstraction makes reachability of program points
decidable. Most analysis questions encountered in practice (and all the ones
we are interested in in this monograph) ask for determining a property valid
in all executions of the programs. For such questions information that is deter-
mined after guarded branching is abstracted to non-deterministic branching is
valid, because more executions are considered. Adopting this abstraction, we
work with non-deterministic programs in this monograph. Non-deterministic
programs represent deterministic programs in which guarded branching has
been abstracted to non-deterministic branching.
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 xn := xn + 1

xn := 0

x2 := 0

r := 1 div (p(x1, . . . , xn)2 + 1)

x1 := x1 + 1

x1 := 0

Fig. 1.2. Undecidability of constant detection; the reduction of Reif and Lewis.

A Hierarchy of Integer Constants in Sequential Programs

The abstraction to non-deterministic branching does not solve all the prob-
lems with undecidability. Constant detection, for instance, remains undecid-
able for programs working on integer variables and a full signature of integer
operators. Independent proofs of this fact have been given by Hecht [30] and
by Reif and Lewis [78]. We briefly recall the construction of Reif and Lewis. It
is based on a reduction from Hilbert’s famous tenth problem, whether a multi-
variate polynomial has a zero in the natural numbers. This is known to be an
undecidable problem [50]. Assume given a polynomial p(x1, . . . , xn) in n vari-
ables x1, . . . , xn with natural coefficients different from the zero polynomial
and consider the (non-deterministic) program in Figure 1.2. The initializa-
tion and the loop choose an arbitrary natural value for the xi. If the chosen
values constitute a zero of p(x1, . . . , xn), then p(x1, . . . , xn)2 + 1 = 1 and r is
set to 1. Otherwise, p(x1, . . . , xn)2 +1 ≥ 2 such that r is set to 0. Therefore, r
is a constant of value 0 at the end of the program if and only if p(x1, . . . , xn)
does not have a natural zero. This result shows us that we cannot even hope
for algorithms that detect all constants in non-deterministic programs.

On the other hand there are well-known and well-defined classes of con-
stants that can be detected, even efficiently. A simple example are copy con-
stants [20]. Roughly speaking, a variable x is a copy constant either if it
is assigned a constant value (e.g., through x := 42) or if it is assigned the
value of another copy constant (e.g., in y := 42 ;x := y). All other forms
of assignments (e.g. x := y + 1) are (conservatively) assumed to make x
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non-constant [83]. Copy constants can efficiently be detected by a standard
dataflow analysis; cf. Appendix A. Also if we restrict attention to programs
without loops, even general constant detection is clearly decidable because
there are only finitely many execution paths reaching any given program
point and we can inspect all paths in succession. But even in this setting
the problem is intractable; recently it has been shown to be co-NP-hard [42].
Another decidable class of constants are finite constants [89].

These results motivate our considerations in Chapter 2 and 3 where we
examine the borderline of intractability and undecidability more closely. To
this end, we investigate the constant propagation problem for integers with
respect to a three-dimensional taxonomy. The first dimension is given by the
distinction between arbitrary and loop-free flow graphs.

The second dimension introduces a hierarchy of weakened versions of
the constant-propagation problem. In copy-constant propagation only non-
composite expressions are interpreted on the right hand side of assignments;
all other expressions are assumed to produce non-constant values. We are
interested in the question how far we can go in restricting the expressions
that are interpreted exactly less drastically. A natural way of relaxing this
restriction is to fix a sub-signature of integer operators and to require that all
expressions built from operators of this sub-signature are interpreted fully.
All but one of the classes studied in Chapter 2 are given in this way. More
specifically, we investigate the following natural sub-signatures of the full in-
teger signature and use the following names for the corresponding classes of
constants:

1. the empty signature gives rise to copy constants ;
2. the signature {+,−} gives rise to Presburger constants.
3. the signature {+,−, ∗} gives rise to polynomial constants ; and
4. the full integer signature {+,−, ∗, div, mod} gives rise to full integer con-

stants.1

The one remaining class is the class of linear constants which has previously
been studied in the literature [83]. It lies between the classes of copy constants
and Presburger constants. In linear-constant detection all expressions of the
form a ∗ x + b, where a and b are integers and x is a program variable, are
interpreted in addition to non-composite expressions.

Finally, in the third dimension we vary the general nature of the constant-
propagation problem. Besides the standard must-constancy problem we con-
sider the less frequently addressed problem of may-constancy. Essentially,
this problem asks if a variable may evaluate to a given constant c at a
given program point in some program execution. Inspired by the work of
Muth and Debray [69] we further distinguish between a single-value and a

1 The results remain valid if we abandon the mod operator. Note that mod can
be expressed by the other operators by means of the identity xmod y = x − x ∗
(xdiv y) for x ≥ 0, y > 0.



1. Introduction 5

multiple-value variant, where in the latter case the values of multiple vari-
ables are checked simultaneously. While the most prominent application of
must-constant propagation is compile-time simplification of expressions, both
must- and may-variants are equally well suited for eliminating unnecessary
branches in programs. Furthermore, the may-variant leads to insight in the
complexity of (may-)aliasing of array elements. It has also strong connections
to reachability analysis, a topic that has found much attention in recent years
in the model checking community.

Combination of the second and third dimension of the taxonomy gives
rise to 15 different classes of constants. We succeed in almost completely
characterizing the complexity of detecting these classes of constants in general
(non-deterministic) flow graphs as well as in loop-free flow graphs. Only two
questions remain open, both concern general flow graphs: (1) we miss an
upper bound for linear may-constants and (2) the upper and lower bound for
polynomial must-constants do not coincide.

Constant Propagation Via Effective Weakest Preconditions

There are two motivations for research that classifies the complexity for sub-
classes of analysis problems. On the theoretical side, we hope to increase
our understanding of the tradeoff between efficiency and precision for anal-
ysis problems that can be solved only approximately. On the practical side,
we hope to uncover potential for construction of more powerful analysis al-
gorithms. Indeed, perhaps the most interesting results of our study of the
constant taxonomy are the following two findings that uncover algorithmic
potential (Chapter 3).

The first finding is that the detection of Presburger constants is tractable,
i.e. can be done in polynomial time; the second is that polynomial constants
are decidable. The latter result is particularly interesting because full con-
stants are undecidable as we have seen above. So the division operator is
identified as the source of non-decidability. For showing decidability of poly-
nomial constants we apply results from computable ring theory.

The detection algorithms for Presburger and polynomial constants pro-
posed in this monograph use an indirect three phase approach. In the first
phase a candidate value is computed that is verified in the second and third
phase by means of a symbolic weakest-precondition computation. The algo-
rithms are obtained by instantiating a generic algorithm for the construction
of approximate constant-propagation algorithms that are complete with re-
spect to evaluation of a subset of expressions. We describe the general algo-
rithmic idea of constant propagation via symbolic weakest-precondition com-
putation and analyze the demands for making this general algorithmic idea
effective. Assertions are represented by affine subspaces of Qn for Presburger
constants and by ideals in the polynomial ring Z[x1, . . . , xn] for polynomial
constants.
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Limits for the Analysis of Parallel Programs

While the first part is concerned with analysis of sequential programs, the
bulk of this monograph is concerned with analysis of parallel programs. Au-
tomatic analysis of parallel programs is known as a notoriously hard problem.
A well-known obstacle is the so-called state-explosion problem: the number
of (control) states of a parallel program grows exponentially with the number
of parallel components. Some results that are rather surprising in view of the
state-explosion problem have been the starting point for the considerations
in this monograph: certain basic but important dataflow-analysis problems
can still be solved completely and efficiently for programs with a fork/join
kind of parallelism. Let us briefly report on these results before we describe
our contribution.

Knoop, Steffen, and Vollmer [44] show that bit-vector analyses, which
comprise, e.g., live/dead variables, available expressions, and reaching def-
initions [56], can efficiently be performed on such programs. Knoop shows
in [41] that a simple variant of constant detection, that of so-called strong
constants, is tractable as well. These papers restrict attention to the intrapro-
cedural problem, in which each procedure body is analyzed separately with
worst case assumption on called procedures. Seidl and Steffen [85] general-
ize these results to the interprocedural case in which the interplay between
procedures is taken into account and to a slightly more extensive class of
dataflow problems called gen/kill problems. These papers extend the fixpoint
computation technique common in data flow analysis to parallel programs.

Another line of research applies automata-theoretic techniques that orig-
inally have been developed for the verification of so-called PA-processes
(Process-Algebra Processes) [5, 51, 7, 47], a certain class of infinite-state
processes combining sequentiality and parallelism. Specifically, Esparza and
Knoop [18], and Esparza and Podelski [19] demonstrate how live variables
analysis can be done and indicate that other bit-vector analyses can be ap-
proached in a similar fashion.

Can these results be generalized further to considerably richer classes of
dataflow problems? For answering this question we investigate the complex-
ity of exact copy-constant detection in parallel programs. Intuitively, copy-
constant detection which is closely related to analysis of static dependences
represents the next level of difficulty of dataflow problems beyond gen/kill
problems. In the sequential setting, copy-constant are detected by a distribu-
tive dataflow framework on a lattice with chain height two and can thus—by
a classic result of Kildall [40, 56]—completely and efficiently be solved by a
fixpoint computation.

We show in Chapter 4 by means of a reduction from the halting problem
for two-counter machines that copy-constant detection is undecidable in par-
allel programs with procedures (parallel interprocedural analysis). Moreover,
we show PSPACE-completeness in case that there are no procedure calls
(parallel intraprocedural analysis), and co-NP-completeness if also loops are
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abandoned (parallel acyclic analysis). The latter results rely on reductions
from the intersection problem for regular and star-free regular expressions,
respectively. These results render the possibility of complete and efficient
dataflow algorithms for parallel programs for more extensive classes of anal-
yses unlikely even for loop-free programs, as it is generally believed that the
inclusions P ⊆ (co-)NP ⊆ PSPACE are proper.

Let us be a bit more specific about the setting in which these results are
obtained. We consider a prototypic language of explictly parallel programs.
The threads operate on a shared memory via assignment statements of a very
restricted form:2 constant assignments x := 0 and x := 1 for two distinct con-
stants 0 and 1, and copying assignments x := y. Any sensible concurrent pro-
gramming language that allows threads to access a shared memory provides
such statements and therefore our hardness results are applicable to many sce-
narios. The language allows us to form composed statements by means of se-
quential composition ;, parallel composition ‖, and non-deterministic branch-
ing �. Moreover, there is a loop construct loop π end, that executes the
loop body π an indefinite number of times. The non-deterministic branching
and indefinite loop constructs are chosen in accordance with the abstraction
of guarded to non-deterministic branching mentioned above. Parallelism is
understood in an interleaving fashion; assignment statements are assumed to
execute atomically.

In the intraprocedural setting we consider analysis in statements of the
form described above; in the loop-free case we abandon the loop statement.
In the interprocedural setting we consider programs consisting of procedures,
the body of which consist of statements of the form outlined above. Of course,
procedures may also (recursively) call each other. A terminological remark is
in order here. Whenever we speak of interprocedural analysis, we implicitly
imply that the analysis takes properly into account the call/return behavior
of procedures, i.e., we always assume that a dynamic instance of a procedure
entered at a certain call site returns to that same call sites. In the tradi-
tional parlance of the flow-analysis literature one says that only realizable
paths are considered and that the analysis is context-sensitive. In the litera-
ture also so-called context-insensitive interprocedural analyses are considered.
Such analyses do not properly mirror the call/return behavior but pessimisti-
cally assume that a procedure called at a certain call site may return to any
other call site. Clearly, this leads to sound but in general less precise anal-
ysis results. In this monograph we always imply that interprocedural prob-
lems only involve realizable paths. Thus, we reserve the term interprocedural
analysis or problem for context-sensitive interprocedural analysis or problem,
respectively.

2 Just for presentational convenience and clarity two other types of basic state-
ments are considered in addition: the do-nothing statement skip and write-
statements write(e).
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The results of Chapter 4 should be contrasted with complexity and
undecidability results of Taylor [91] and Ramalingam [77] who consider
synchronization-dependent dataflow analyses of parallel programs, i.e. analy-
ses that are precise with respect to the synchronization structure of programs.
Taylor and Ramalingam largely exploit the strength of rendezvous-style syn-
chronization, while we exploit interference only here and no kind of synchro-
nization. Our results thus point to a much more fundamental limitation in
dataflow analysis of parallel programs.

In order to perform our reductions without relying on synchronization we
use a subtle technique involving re-initialization of variables. In all reduc-
tions programs are constructed in such a way that certain well-behaved runs
simulate some intended behavior, e.g., the execution sequences of the given
two-counter machine in the undecidability proof. But we cannot avoid that
the constructed programs have also certain runs that bear no correspondence
to the behavior to be simulated. One would use synchronization to exclude
such spurious runs but in the absence of synchronization primitives this is
not possible. In order to solve this problem, we ensure by well-directed re-
initialization of variables that the spurious runs do not contribute to propa-
gation of the information that is to be determined by the analysis. Intuitively,
one may interpret this as a kind of “internal synchronization”.

The prototypic framework poses only rather weak requirement such the
results apply to many concurrent programming languages. One additional
remark concerning the parallel composition operator is in order here. It is
inherent in the definition of parallel composition that π1 ‖ π2 terminates
if and when both threads π1 and π2 terminate (like, for instance, in OC-
CAM [33]). This means that there is an implicit synchronization between π1

and π2 at the termination point. However, as explained in Section 4.6, the
hardness results remain valid without this assumption. Therefore, they also
apply to languages like JAVA in which spawned threads run and terminate
independently of the spawning thread.

Abandoning the Atomic Execution Assumption

Another standard assumption turns out to be more critical: atomic execution
of assignments. The idealization that assignments execute atomically is quite
common in the literature on program verification as well as in the theoretical
literature on flow analysis of parallel programs. However, in a multi-processor
environment where a number of concurrently executing processes access a
shared memory, this is often an unrealistic assumption. The reason is that
assignments are broken into smaller instructions before execution. This is
explained in more detail in Chapter 6.

Surprisingly, the reductions of Chapter 4 break down when the atomic
execution assumption for assignment statements is abandoned. Without this
assumption the subtle game of re-initialization of variables that is crucial
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for putting the reductions to work can no longer be played. This is illus-
trated by means of an example program in Section 6.2. Of course, this does
not imply that the hardness results are no longer valid: there could be re-
ductions employing other techniques. But we can indeed show, that inter-
procedural detection of copy constants and faint-code elimination becomes
decidable. Specifically, we develop EXPTIME-algorithms for these problems.
Recall that these problems are undecidable under the assumption that as-
signments execute atomically. So, the (unrealistic) idealization from program
verification “atomic execution of assignment statements” that presumably
simplifies matters actually increases the difficulty of these problems from
the program analysis point of view: amazingly, these problems become more
tractable if we adopt a less idealized, more realistic view of execution. The
presentation of these results is spread over Chapters 5 to 8 as it is techni-
cally somewhat involved. In the following we give a high-level overview and
introduction to these chapters.

In our algorithms we apply the constraint-based approach to program
analysis. Constraint-based program analysis provides a framework to develop
analyses and argue about their correctness and completeness. Put in a nut-
shell, the idea is to set up constraint systems that characterize sets of program
executions and to perform the analysis by solving these constraint systems
over a lattice of abstract values. Appendix A explains this in more detail.

Constraint-based analysis of parallel programs has been pioneered by Seidl
and Steffen [85]. In order to come to grips with parallel composition, new
operators on run sets are used that are not needed in systems for sequential
programs. The new operators are an interleaving operator ⊗ and prefix and
postfix operators pre and post . In general, it is not possible to give adequate
interpretations of these new operations for arbitrary dataflow frameworks.
Seidl and Steffen show, however, that for gen/kill dataflow problems this can
be done. Note that the copy-constant framework does not belong to this class.

In Chapter 5 we define parallel flow graphs, furnish them with an opera-
tional semantics, and define constraint systems characterizing various sets of
runs: same-level and inverse-same-level runs, reaching and terminating runs,
and bridging runs. For the moment, we still assume atomic execution of base
statements. While same-level and reaching runs are already found in Seidl
and Steffen’s exposition, and they indicate that inverse-same-level and ter-
minating runs can be obtained by duality, bridging runs are new. Moreover,
in contrast to Seidl and Steffen we relate the constraint systems to the under-
lying operational semantics instead of postulating them. In our opinion this
clarifies what exactly is specified by the constraint systems. It also helped to
uncover and correct a subtle error in their treatment of non-reachable pro-
gram points. While an understanding of the other sets of runs is not needed
in the remainder of this introduction, we must explain bridging runs.

In a bridging run we are given two program points u and v. A bridging
run from a program point u to another program point v is a sequence of
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atomic actions that can bring us from a configuration in which control is at
program point u to a configuration in which control is at program point v.
Why are we interested in bridging runs? We call a pair of program variables
(x, y) a dependence and say that a given run exhibits the dependence (x, y)
if the value of y after the run depends on the value of x before the run,
where we judge dependences syntactically. If we are able to determine the
dependences exhibited by bridging runs then we can use this information
to indirectly answer certain program analysis questions. In particular, this
information suffices to detect copy constants and faint code.

In Chapter 6 we explain why atomic execution is not a realistic assumption
on program execution and motivate and define a non-standard interpretation
for the operators and constants used in the constraint systems for parallel
programs. This non-standard interpretation captures non-atomic execution
of base statements. The idea is to break base statements into atomic actions
of smaller granularity and to use an interleaving semantics on these atomic
actions. By interpreting the constraint systems from Chapter 5 with the new
interpretation, we get run sets that capture non-atomic execution of base
statements. These run sets are taken as the reference semantics for judging
the precision of our algorithms for copy-constant detection and faint-code
elimination.

Unfortunately, we cannot obtain the dependences of the interleaving R1⊗
R2 of two (non-atomic) run sets from the dependences of the two run sets
R1 and R2: we can invent run sets that have the same dependences but
behave differently when interleaved with other run sets. Therefore, we need
a more informative abstract domain that records more information than just
dependences. This domain is the topic of Chapter 7. Here we give a rough
description of the underlying ideas.

The basic idea is to collect not just dependences but dependence sequences.
A dependence sequence of a run is a sequence of dependences that can be
exhibited successively by the run. For example, the run r1 = 〈c := b, e := d〉
has 〈(b, c), (d, e)〉 as one of its dependence sequences. This dependence se-
quence plays a dual role: it captures, on the one hand, the potential of r1

to exhibit the dependence (b, e) if its environment can fill the ‘gap’ between
c and d (e.g., if the environment can perform the run r2 = 〈d := c〉) and,
on the other hand, its potential to successively fill the ‘gaps’ (b, c) and (d, e)
in a run of the environment (e.g., in r3 = 〈b := a, d := c, f := e〉). This idea
needs to be refined further in order to allow a proper propagation through
all the operators: we must also collect information about transparency of
runs. This leads to the notion of dependence traces. Moreover, we need to
ensure finiteness of the domain in order to ensure that least fixpoints can
be computed effectively. The latter problem is solved by introducing first, a
subsumption order on dependence traces and, secondly, a notion of shortness
of dependence traces. We then work with antichains (with respect to the
subsumption order) of short dependence traces. In Chapter 7 we show that
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one can define on this abstract domain operations that are both sound and
precise abstractions of the corresponding operations on non-atomic run sets.

By solving the constraint system for bridging runs over the abstract do-
main introduced in Chapter 5, we can determine in particular the depen-
dences exhibited by bridging runs. As mentioned, this information can be
used to detect copy constants and eliminate faint code. Algorithms based
on this idea that solve these problems are developed in Chapter 8 and their
running time is analyzed. These algorithms prove that we can detect copy
constants and eliminate faint code in parallel programs completely, if we
abandon the assumption that base statements execute atomically.

The algorithms run in exponential time, which raises the question whether
there are also efficient algorithms for these problems. In Chapter 9 we show
by means of a reduction from the well-known SAT-problem that the answer
is ‘no’, unless P=NP. Unlike the reductions in Chapter 4, this reduction
relies only on active propagation along copying assignments but not on well-
directed re-initialization. It applies independently of the atomicity assump-
tion for base statements. In the conclusions, Chapter 10, we sketch possible
remedies and discuss directions for future research that may still lead to
algorithms of practical interest.



2. A Hierarchy of Constants

Constant propagation aims at detecting expressions in programs that always
yield a unique constant value at run-time. Replacing constant expressions
by their value is one of the most widely used optimizations in practice (cf.
[2, 30, 56]). Unfortunately, the constant propagation problem is undecidable
even if the interpretation of branches is completely ignored, like in the com-
mon model of non-deterministic flow graphs where every program path is
considered executable. This has been proved independently by Hecht [30]
and by Reif and Lewis [78]. We discussed Reif and Lewis’ proof in the in-
troduction. Here we briefly recall Hecht’s proof because we will encounter
variants of his construction later in this chapter. It is based on the Post
correspondence problem.

A Post correspondence system consists of a set of pairs (u1, v1), . . . , (uk, vk)
with ui, vi ∈ {0, 1}∗. The correspondence system has a solution, if and only
if there is a sequence i1, . . . , in such that ui1 · . . . · uin = vi1 · . . . · vin . Fig-
ure 2.1 illustrates Hecht’s reduction. The variables x and y are used as decimal
numbers representing strings in {0, 1}∗. For each pair of the correspondence
system a distinct branch of the loop appends the strings ui and vi to x and y,
respectively. This is achieved by shifting the digits of x and y by |ui| and |vi|
places first by multiplying them with 10|ui| and 10|vi|, where |ui| and |vi| are
the length of ui and vi. Afterwards, we add ui and vi where we identify ui and
vi with the decimal number they represent. It is easy to see that x−y always
evaluates to a value different from 0, if the Post correspondence problem has
no solution.1 In this case the expression 1 div ((x− y)2 +1) always evaluates
to 0. But if the Post correspondence system is solvable, the expression x− y
can have the value 0 such that 1 div ((x− y)2 +1) can evaluate to 1. Thus, r
is constant (with value 0), if and only if the Post correspondence problem is
not solvable. To exclude r from being constantly 1 in the case that the Post
correspondence system is universally solvable, r is set to 0 by a bypassing
assignment statement.

On the other hand, constant detection is certainly decidable for acyclic,
i.e., loop-free, programs. But even in this setting the problem is intractable;
it has been shown to be co-NP-hard [42] recently. This result is based on

1 Note that the initialization of x and y with 1 avoids a problem with leading
zeros.
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y := 10|vk| ∗ y + vk

x := 10|u1| ∗ x + u1

r := 1 div ((x− y)2 + 1)

x := 10|uk| ∗ x + uk

r := 0

y := 1
x := 1

y := 10|v1| ∗ y + v1

Fig. 2.1. Undecidability of constant propagation: the reduction of Hecht.

a polynomial-time reduction of the co-problem of 3-SAT, the satisfiability
problem for clauses which are conjunctions consisting of three negated or
unnegated Boolean variables (cf. [22, 72]). An instance of 3-SAT is solvable
if there is a variable assignment such that every clause is satisfied.

The reduction is illustrated in Figure 2.2 for a 3-SAT instance over the
Boolean variables {b1, . . . , bk}:

(b3 ∨ b5 ∨ b6)︸ ︷︷ ︸
c1

∧ . . . ∧ (b2 ∨ b3 ∨ b5)︸ ︷︷ ︸
cn

.

For each Boolean variable bi two integer variables xi and xi are introduced
that are initialized by 0. The idea underlying the reduction is the following:
each path of the program chooses a witnessing literal in each clause by setting
the corresponding variable to 1. If this can be done without setting both xi

and xi for some i then we have found a satisfying truth assignment, and
vice versa. On such a path the expression x1x1 + . . . + xkxk evaluates to 0
and, consequently, both r1 and r2 are set to 0. On all other paths the value
of x1x1 + . . . + xkxk differs from 0 but stays in the range {1, . . . , k} which
implies that variable r2 is set to 1. Similarly to the undecidability reduction
of Figure 2.1 the bypassing assignment r1 := 1 avoids that r1 is constantly 0
in the case that all runs induce satisfying truth assignments. Summarizing,
r2 is a constant (of value 1), i.e., evaluates to 1 on every program path if and
only if the underlying instance of 3-SAT has no solution.

Note that both reductions presented so far crucially depend on an operator
like integer division (or modulo) which is capable of projecting many different
values onto a single one.
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}

} Coding

Coding
of c1

of cn

x1 := 0

x1 := 0

xk := 0

xk := 0

x5 := 1

x3 := 1

r2 := (r1 + k − 1) div k

x2 := 1 x5 := 1

x6 := 1x3 := 1

r1 := x1x1 + . . . + xkxkr1 := 1

Fig. 2.2. Co-NP-hardness of constant detection for loop-free programs

The purpose of this and the following chapter is to examine the borderline
of intractability and undecidability more closely. To this end, we investigate
the constant detection problem for non-deterministic flow graphs working on
integers with respect to a three-dimensional taxonomy. This taxonomy has
been introduced in a conference paper [60] where also the reductions of this
chapter have first been presented.

The first dimension of the taxonomy is given by the distinction between
arbitrary and loop-free flow graphs. The second dimension introduces a hi-
erarchy of weakened versions of the constant propagation problem. In these
variants only assignment statements whose right hand side belongs to a given
subset S of expressions are interpreted exactly. Assignment statements of
other form are conservatively interpreted as non-deterministic assignments.
We consider expression sets S that are given by restricting the set of in-
teger operators that are allowed in expression building. We consider signa-
tures without operators (copy constants), with operators restricted to the
set {+,−} (Presburger constants), operators restricted to {+,−, ∗} (poly-
nomial constants), and the standard signature, i.e., the one with operators
+,−, ∗, div, mod (full constants). Moreover, we consider linear expressions in
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one variable, i.e., expressions of the form x := ay + b because the associated
class of constants, linear constants, has previously been studied in the litera-
ture [83]. Obviously, the class of linear constants lies between copy constants
and Presburger constants.

Finally, in the third dimension we vary the general nature of the con-
stant detection problem. Besides the standard must-constancy problem we
also consider the less frequently addressed problem of may-constancy here.
Essentially, this problem asks if a variable may evaluate to a given constant d
at some given program point. Inspired by work of Muth and Debray [69] we
further distinguish between a single value and a multiple value variant, where
in the latter case the values of multiple variables are questioned simultane-
ously. Muth and Debray introduced the single and multiple value variants
as models for independent-attribute and relational-attribute dataflow analy-
ses [37]. May-constant detection, in particular the multiple value variant, is
closely related to reachability of program, a problem that has found much
attention recently in the model checking community.

While the most prominent application of must-constant detection is the
compile-time simplification of expressions, the must- and may-variants are
equally well suited for eliminating unnecessary branches in programs. Fur-
thermore, the may-variant has some interesting consequences for the com-
plexity of (may-)aliasing of array elements.

In this chapter we introduce this taxonomy of constants formally, discuss
the results that are known or obvious and present a number of new intractabil-
ity and undecidability results that sharpen previous results. In the next chap-
ter we show decidability of polynomial must-constants and polynomial-time
decidability of Presburger must-constants.

2.1 A Taxonomy of Constants

2.1.1 Flow Graphs

Let X = {x1, . . . , xn} be a finite set of variables and Expr a set of expressions
over X ; the precise nature of expressions is immaterial at the moment. A
(deterministic) assignment is a pair consisting of a variable and an expression
written in the form x := t; the set of assignment statements is denoted by
Asg. A non-deterministic assignment statement consists of a variable and is
written x :=?; the set of non-deterministic assignment statements is denoted
by NAsg.

A (non-deterministic) flow graph is a structure G = (N, E, A, s, e) with
finite node set N , edge set E ⊆ N × N , a unique start node s ∈ N , and a
unique end node e ∈ N . We assume that each program point u ∈ N lies on
a path from s to e. The mapping A : E → Asg ∪ NAsg ∪ {skip} associates
each edge with a deterministic or non-deterministic assignment statement or
with the statement skip. Edges represent the branching structure and the
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statements of a program, while nodes represent program points. The set of
successors of program point u ∈ N is denoted by Succ[u] = {v | (u, v) ∈ E}.

A path reaching a given program point u ∈ N is a non-empty sequence of
edges p = 〈e1, . . . , ek〉 with ei = (ui, vi) ∈ E such that u1 = s, vk = u, and
vi = ui+1 for 1 ≤ i < k . In addition p = ε, the empty sequence, is a path
reaching the start node s. We write R[u] for the set of paths reaching u.

Let Val be a set of values. A mapping σ : X → Val that assigns a value to
each variable is called a state; we write Σ = {σ | σ : X → Val} for the set of
states. For x ∈ X , d ∈ Val and σ ∈ Σ, we write σ[x �→ d] for the state that
maps x to d and coincides for the other variables with σ. We assume a fixed
interpretation for the operators used in terms and we assume that the value
of term t in state σ, which we denote by tσ, is defined in the standard way.

In order to accommodate non-deterministic assignments we interpret
statements by relations on Σ rather than functions. The relation associated
with assignment statement x := t is [[x := t]] def= {(σ, σ′) | σ′ = σ[x �→ tσ]};
the relation associated with non-deterministic assignment x :=? is [[x :=?]] def=
{(σ, σ′) | ∃d ∈ Val : σ′ = σ[x �→ d]}; and the relation associated with skip

is the identity: [[skip]] def= {(σ, σ′) | σ = σ′}. This local interpretation of
statements is straightforwardly extended to paths p = 〈e1, . . . , ek〉 ∈ E∗:
[[p]] = [[A(e1)]] ; . . . ;[[A(ek)]], where ; denotes relational composition. We obtain
the set of states S[u], which are possible at a program point u ∈ N as follows:
S[u] def= {σ | ∃σ0 ∈ Σ, p ∈ R[u] : (σ0, σ) ∈ [[p]]}. The state σ0 represents
the unknown initial state—the state in which the program is started—which
models the input to the program.

2.1.2 May- and Must-Constants

In this section we define when a variable x is a constant at a program point
u in a given flow graph. We distinguish between must-constants and the
less frequently considered class of may-constants. May-constants come in two
variants: as single and multiple value may-constants. We provide formal defi-
nitions as well as some typical application scenarios. For simplicity, we restrict
attention to constancy of variables in our formal framework. In practice also
constancy of expressions is of interest. Our definitions can straightforwardly
be extended to this more general case and in discussing applications we as-
sume that this has been done. All our results apply also to this more general
setting as constancy of expressions is easily reduced to constancy of variables:
if we are interested in constancy of an expression e at a program point u we
can add an assignment v := e to a new variable v at u and question for
constancy of v.

Must-Constants A variable x ∈ X is a must-constant at a program point
u ∈ N if

∃d ∈ Val ∀σ ∈ S[u] : σ(x) = d .
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The problem of must-constant detection is to determine for a given variable
x and program point u, whether x is a must-constant, and, if so, what the
value of the constant is.

Must-constancy information can be used in various ways. The most im-
portant application is the compile-time simplification of expressions. Further-
more, information on must-constancy can be exploited in order to eliminate
conditional branches. For instance, if there is a condition e �= d situated at
an edge leaving node n and e is determined a must-constant of value d at
node n, then this branch is not executable (cf. Figure 2.3(a)) and may be re-
moved. Since (must-)constant detection and the elimination of unexecutable
branches mutually benefit from each other, approaches for conditional con-
stant propagation were developed taking this effect into account [93, 9].

e = d e = d

b)

Removable if e   is
not a may-constant
of value d

e = d e = d

a)

Removable if e

of value d
a must-constant

   is

Fig. 2.3. Constancy information used for branch elimination.

May-Constants Complementary to must-constancy, a variable x ∈ X is a
may-constant of value d ∈ Z at a program point u ∈ N if

∃σ ∈ S[u] : σ(x) = d .

Note that opposed to the must-constancy definition here the value of the
constant is given as an additional input parameter. There is a natural multiple
value extension of the notion of may-constancy. Given variables x1, . . . , xk

and values d1, . . . , dk ∈ Z the corresponding multiple value may-constancy
problem is defined by:

∃σ ∈ S[u] : σ(x1) = d1 ∧ . . . ∧ σ(xk) = dk .

While may-constancy information cannot be used for expression simpli-
fication, it has also some valuable applications. Most obvious is a comple-
mentary branch elimination transformation. If an expression e is not a may-
constant of value d at node n then any branch that is guarded by the condition
e = d is unexecutable (cf. Figure 2.3(b)).
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May-constancy information is also valuable for reasoning about aliasing
of array elements. This can be used, for instance, for parallelization of code
or for improving the precision of other analyses by excluding a worst-case
treatment of assignments to elements in an array. Figure 2.4 gives such an
example in the context of constant propagation. Here the assignment to x can
be simplified towards x := 6, only if the assignment to a[i] does not influence
a[0]. This, however, can be guaranteed if i is not a may-constant of value 0
at the corresponding program node.

a[0] := 5

a[i] := ..

x := a[0] + 1

Fig. 2.4. Using array alias information from may-constant detection in the context
of must-constant propagation.

2.1.3 Weakened Constant Detection Problems

We can weaken the demands for a constant detection algorithm as follows: we
select a certain subset of expressions S ⊆ Expr that are interpreted precisely
and assume conservatively that assignments whose right hand side does not
belong to S assign an arbitrary value to their respective target variable. This
can be made formal as follows.

For a given flow graph G = (N, E, A, s, e) and subset of expressions S ⊆
Expr, let GS = (N, E, AS , s, e) be the flow graph with the same underlying
graph but with the following weakened edge annotation:

AS(e) =
{

x :=? , if A(e) = (x := t) and t /∈ S
A(e) , otherwise .

A variable x ∈ X is called an S-must-constant (S-may-constant) at program
point u ∈ N in flow graph G if it is a must-constant (may-constant) at u in
the weakened flow graph GS . The detection problem for S-must-constants (S-
may-constants) is the problem of deciding for a given set of variables X , flow
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graph G, variable x, and program point u whether x is an S-must-constant
(S-may-constant) at u in G. Clearly, if x is an S-must-constant at u it is also
a must-constant at u. Similarly, if x is not an S-may-constant at u it is not
a may-constant at u. In both cases the reverse implication does not hold in
general. Thus, an analysis that solves a weakened constant-detection problem
yields sound information for must-constancy and non-may-constancy in the
original flow graph.

We should emphasize two points about the above framework that make
the construction of S-constant-detection algorithms more challenging. Firstly,
in contrast to the setup in [60], we allow assignment statements, the right
hand side of which do not belong to S. They are interpreted as non-
deterministic assignments. Forbidding them is adequate for studying lower
complexity bounds for analysis questions, which is the main concern of [60].
It is less adequate when we are interested in algorithms because in practice
we want to detect S-constants in the context of other code.

Secondly, a variable can be an S-constant although its value statically
depends on an expression that is not in S. As a simple example consider the
flow graph in Fig. 2.5 and assume that the expressions 0 and y− y belong to
S but e does not.

1

2

3

x := y − yy := e

x := 0

Fig. 2.5. Static dependency and S-constancy: variable x is an S-constant at pro-
gram point 3 although it statically depends on the uninterpreted expression e.

Because y− y equals 0 for any value y ∈ Z, an S-must-constant detection
algorithm must identify x as a must-constant (of value 0) at program point
3, although the value of x at program point 3 statically depends on the
uninterpreted expression e. Besides cancellation through subtraction such
effects arise through multiplication with terms evaluating to zero. Hence,
S-constant detection algorithms must handle arithmetic properties of the
expressions in S. Of course, in real programs cancellation through arithmetic
properties may not be as obvious as in this example.

There are at least two other natural definitions for a notion of S-constant
propagation:

1. We can study constant propagation in flow graphs whose edge annotation
is restricted to assignments from S ∪ {skip}; this is the setup in [60].

2. We can treat the effect of assignments whose right hand side does not
belong to S more pessimistically: if the value of x at u statically depends
on an uninterpreted assignment, we may define that
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– x is not a must-constant at u and that
– x is a may-constant at u for any value d.
This definition also leads to a conservative approximation of must- and
non-may constancy, but is weaker than our definition as demonstrated
by the above example.

From all the potential definitions our definition requires most from an
S-constant-propagation algorithm. Firstly, it must handle more inputs than
with Definition 1. Secondly, an S-constant-propagation algorithm in the sense
of 2 can easily be obtained from an algorithm in our sense. We only need
to combine it in a straightforward way with a static dependence analysis.
The latter can be performed by a cheap bit-vector analysis [30, 56]. On the
other hand, Definition 1 poses in principle the strongest requirements for
hardness considerations. Fortunately, all our reductions use only statements
from S ∪ {skip}. Therefore, all our results apply to all three definitions.

2.1.4 Classes of Integer Constants

To study weakened versions of constant-detection problems is particularly
interesting for programs computing on the integers, i.e., if Expr is the set
of integer expressions formed from integer constants and variables with the
standard operators +,−, ∗, div, mod: we have seen above that the general
constant-detection problem is undecidable in this case.

We introduce now weakened classes of integer constants. Except for linear
constants these classes are induced by considering only a fragment of the
standard signature. While the first two classes are well-known in the field of
(must-) constant propagation and the class of Presburger constants is closely
related to the class of invariants considered in [39], we are not aware of any
work devoted to the fragment of polynomial constants prior to our conference
papers [60, 62].

Copy Constants. S-constants with respect to the set S = X ∪Z, i.e., the set
of non-composite expressions, are known as copy constants [20]. This is due
to the fact that constants can only be produced by assignments x := c and
be propagated by assignments of the form x := y.

Linear Constants. S-constants with respect to the set S = {a ∗ x + b | a, b ∈
Z, x ∈ X} ∪X ∪ Z are known as linear constants [83].

Presburger Constants. A Presburger constant is an S-constant for the set
S of integer expressions that can be built from the operators + and −.
We decided for this term because in Presburger arithmetics integer oper-
ations are also restricted to addition and subtraction. Note, however, that
the complexity issues in deciding Presburger formulas and Presburger con-
stants are of a completely different nature, since in the context of constant
detection the problem is mainly induced by paths in flow graphs and not
by a given logical formula. We call S-constants with respect to the set
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S = {c0 +
∑k

i=1 ci ∗ xi | cj ∈ Z, xi ∈ X} affine constants. As far as expres-
siveness is concerned Presburger expressions and affine expressions coincide
because multiplication with constants can be simulated by iterated addition.
Affine expressions can, however, be more succinct. Nevertheless, all our re-
sults on Presburger constants equally apply to affine constants and from now
on we do not distinguish these two classes of constants.

Polynomial Constants. If all expressions built from the operators +,−, ∗ are
interpreted, the resulting constants are called polynomial constants as this
signature allows just to write multi-variate polynomials. Formally, polynomial
constants are S-constants with respect to the set S = Z[x1, . . . , xn], the set
of multi-variate polynomials in the variables x1, . . . , xn with coefficients in Z.

2.2 Known Results

Table 2.1 summarizes the complexity results that are known or obvious. Prob-
lems that have a polynomial-time algorithm are emphasized in a light shade
of grey, those that are decidable though intractable in a dark shade of grey,
and the undecidable fields are filled black. White fields represent problems
where the complexity and decidability is unknown or at least, to the best of
our knowledge, undocumented. In the following we briefly comment on these
results.

For an unrestricted signature we already presented Hecht’s undecidabil-
ity proof for must-constants and the co-NP-hardness result for the acyclic
counterpart. It is also well-known that the must-constant detection problem
is distributive [30], if all right-hand side expressions are either constant or
represent a one-to-one function in Z → Z depending on a single variable (see
the remark on page 206 in [86] for a similar observation). Hence the class
of linear constants defines a distributive dataflow problem, which guarantees
that the standard maximum fixed-point iteration strategy over Z ∪ {⊥,�}
computes the exact solution in polynomial time.2

The may-constancy problem for copy constants has recently been exam-
ined by Muth and Debray [69]. It is easy to see that the single value case can
be dealt with in polynomial-time: the number of values that a variable may
possess at a program point (via copy or constant assignments) is bounded by
the number of constant assignments in the program. Hence one can determine
the may-copy-constants by collecting at each program point for all of the vari-
ables the set of possible values from this set. Formally, this can be achieved by
computing the union-over-all-path solution in a union-distributive dataflow
framework over the lattice {σ | σ : Var → 2ZG}, where ZG denotes the set
2 Sagiv, Reps and Horwitz [83] give an alternative procedure for detecting linear

constants by solving a graph reachability problem on the exploded supergraph
of a program. They additionally show that with this method linear constant
detection can be solved precisely even for interprocedural control flow.
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Table 2.1. Complexity of constant detection: known results.
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of constant right-hand sides in the flow graph G under consideration and the
order on functions is the pointwise lift of subset inclusion on 2ZG.

The multiple value problem has been shown NP-complete in the acyclic
case and PSPACE-complete in the presence of unrestricted control flow by
Muth and Debray [69]. For proving NP-hardness and PSPACE-hardness they
use reductions from 3-SAT and the acceptance problem for polynomial-space-
bounded Turing machines, respectively. It is worth mentioning that the num-
ber of variables questioned simultaneously for constancy in these reductions
is not bounded by a fixed constant. Finally, since Muth and Debray do not
consider any kind of arithmetics, all other fields in the may-constancy column
remain open.

In the following we aim at successively filling the white parts in Table
2.1. To this end, we start with providing new undecidability results and then
prove a number of new intractability results. Positive results for the classes
of Presburger and polynomial must-constants are presented in Chapter 3.
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2.3 New Undecidability Results

Hecht’s construction sketched in Fig. 2.1 can easily be adapted for proving
undecidability of Presburger may-constants. The only modification is to re-
place the two assignment to r in Figure 2.1 by a single assignment r := x−y.
As argued before, x may equal y immediately after leaving the loop, if and
only if the instance of the Post correspondence problem has a solution. Hence,
in this case x− y may evaluate to 0.

Theorem 2.3.1. Deciding single valued may-constancy at a program point
is undecidable for the class of Presburger constants.

This construction can be modified further to obtain a stronger undecid-
ability result for the class of multiple value may-constants. Here we have:

Theorem 2.3.2. Deciding multiple valued may-constancy at a program point
is undecidable for the class of linear constants. This even holds if only two
values are questioned.

The idea is to substitute the difference x − y in the assignment to r
by a loop which simultaneously decrements x and y. It is easy to see that
x = 0 ∧ y = 0 may hold at the end of the resulting program if and only if x
may equal y at the end of the main loop.

Complexity of Array Aliasing. The previous two undecidability results
have immediate implications for array aliasing, which complements similar
results known in the field of pointer induced aliasing [46]. As a consequence
of Theorem 2.3.1 we have:

Corollary 2.3.1. Deciding whether A[i] may alias A[c] for a one-dimensional
array A, integer variable i and integer constant c is undecidable, even if i is
computed only using the operators + and −.

Theorem 2.3.2 provides a negative result for array accesses with linear
index calculations.

Corollary 2.3.2. Let c1, c2 be integer constants and i, j integer variables.
Determining whether A[i, j] may alias A[c1, c2] for a two-dimensional array
A is an undecidable problem even if i, j are computed only with linear assign-
ments of the form x := a y + b.

Clearly, x may equal y at the end of the loop in Hecht’s construction if
and only if the given Post correspondence system has a solution. Thus, the
problem to decide whether an array access A[x] may alias another access A[y]
just after the loop is also undecidable. This gives us the following result for
one-dimensional arrays.
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Theorem 2.3.3. Let i, j be integer variables. Determining whether A[i] may
alias A[j] for a one-dimensional array A is an undecidable problem even if
i, j are computed only with linear assignments of the form x := a y + b.

It should be noted that traditional work on array dependences like the
omega test [74, 76] is restricted to scenarios where array elements are ad-
dressed by affine functions depending on some index variables of possibly
nested for-loops. In this setting the aliasing problem can be stated as an in-
teger linear programming problem which can be solved effectively. In contrast,
our results address the more fundamental issue of aliasing in the presence of
arbitrary loops.

2.4 New Intractability Results

After having marked off the range of undecidability we prove in this section
some intractability results.

We start by strengthening the result on the co-NP-hardness of must-
constant detection for acyclic control flow. Here the construction of Figure 2.2
can be modified such that the usage of integer division is no longer necessary.
Basically, the trick is to use multiplication by 0 as the projective operation,
i.e. as the operation with the power to map many different values onto a single
one. In the construction of Figure 2.2 this requires the following modifications
(cf. Fig. 2.6).

All variables are now initialized by 1 and the part reflecting the clauses
sets the corresponding variables to 0. Finally, the assignments to r1 and r2

are substituted by a single assignment r := (x1 + x1) · . . . · (xk + xk) that is
bypassed by another assignment r := 0. It is easy to see that the instance of
3-SAT has no solution if and only if on every path both xi and xi are set to
0 for some i ∈ {1, . . . , k}. This, however, guarantees that at least one factor
of the right-hand side expression defining r is 0 which then ensures that r
is a must-constant of value 0. Finally, the branch performing the assignment
r := 0 assures that r cannot be a must-constant of any other value. Thus, we
have:

Theorem 2.4.1. Deciding polynomial must-constants in acyclic programs is
co-NP-hard.

On the other hand, it is not hard to see that the problem of must-constant
propagation is in co-NP for acyclic control flow. To this end, one has to prove
that the co-problem, i.e., checking non-constancy at a program point, is in
NP, which is easy to see: a non-deterministic Turing machine can guess two
paths through the program witnessing two different values. Since each path
is of linear length in the program size and the integer operations can be
performed in linear time with respect to the sum of the lengths of the decimal
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}

} Coding

Coding
of c1

of cn

x1 := 1

xk := 1

x1 := 1

xk := 1

x3 := 0 x5 := 0 x6 := 0

x5 := 0x3 := 0x2 := 0

r := 0 r := (x1 + x1) · . . . · (xk + xk)

Fig. 2.6. Co-NP-hardness of polynomial constants for acyclic programs.

representation of their inputs, this can be done in polynomial time. Hence
we have:

Theorem 2.4.2. Must-constant propagation is in co-NP when restricted to
acyclic control flow.

Next we are going to show that the problem addressed by Theorem 2.4.1
gets presumably harder without the restriction to acyclic control flow.

Theorem 2.4.3. Detecting polynomial must-constants in arbitrary flow
graphs is PSPACE-hard.

Theorem 2.4.3 is proved by means of a polynomial time reduction from the
language-universality problem of non-deterministic finite automata (NFA)
(cf. remark to Problem AL1 in [22]). This is the question whether an NFA A
over an alphabet X accepts the universal language, i.e., whether L(A)= X∗.
Without loss of generality, let us consider an NFA A=(X, S, δ, s1, F ), where
X = {0, 1} is the underlying alphabet, S = {1, . . . , k} the is set of states, δ ⊆
S×X×S is the transition relation, s1 is the start state, and F ⊆ S is the set
of accepting states. The polynomial time reduction to a constant propagation
problem is depicted in Figure 2.7.

For every state i ∈ {1, . . . , k} a variable si is introduced. The idea of the
construction is to guess an arbitrary input word letter by letter. While this is
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f := 0 f :=
∏

i∈F

si

si := 1 (for i = 2, . . . , k)
s1 := 0

(for i = 1, . . . , k)
si := ti

(for i = 1, . . . , k)(for i = 1, . . . , k)

ti :=
∏

(j,0,i)∈δ

sj ti :=
∏

(j,1,i)∈δ

sj

Fig. 2.7. PSPACE-hardness of polynomial must-constants.

done, it is ensured by appropriate assignments that each variable si holds 0
if and only if the automaton can be in state i after reading the word guessed
so far. This implies that

∏
i∈F si is 0 for all words if and only if A accepts

the universal language.
Initially, only the start state variable s1 is set to 0 as 1 is the only state

which is reachable under the empty word. The central part of the program is
a loop which guesses a next alphabet symbol. If we decide, for instance, for
0, then, for each i, an auxiliary state variable ti is set to 0 by the assignment
ti :=

∏
(j,0,i)∈δ sj , if and only if one of its 0-predecessors is recognized reach-

able by the word guessed so far.3 After all the variables ti have been set in this
way their values are copied to the variables si. When the loop is exited which
can happen after an arbitrary word has been guessed, it is checked whether
the guessed word is accepted. Like before, the direct assignment f := 0 has
the purpose to ensure that constant values different from 0 are impossible.
Therefore, f is a must-constant (of value 0) at the end of the program, if and
only if the underlying automaton accepts the universal language {0, 1}∗.

The final reduction in this section addresses the complexity of linear may-
constants. Here we have:

Theorem 2.4.4. Deciding linear may-constants is NP-hard.

Again we employ a polynomial time reduction from 3-SAT which however
differs from the ones seen before. The main idea here is to code a set of
3 The auxiliary state variables ti are introduced in order to avoid overwriting state

variables which are still used in consecutive assignments.
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satisfied clauses by a number interpreted as a bit-string. For example, in an
instance with three clauses the number 100 would indicate that clause two is
satisfied, while clauses zero and one are not. To avoid problems with carry-
over effects, we employ a (k + 1)-adic number representation where k is the
number of variables in the 3-SAT instance. With this coding we can use linear
assignments to set the single “bits” corresponding to satisfied clauses.

for variable b1

Choice gadgetr := (k + 1)3 + r

r := (k + 1)5 + r

r := 0

r := (k + 1)2 + r

Fig. 2.8. NP-hardness of linear may-constant detection.

To illustrate our reduction let us assume an instance of 3-SAT with
Boolean variables {b1, . . . , bk} and clauses c0, . . . , cn−1, where the literal b1

is contained in c3 and c5, and the negated literal ¬b1 is contained in c2 only.
Then this is coded in a program as depicted in Figure 2.8. We have a non-
deterministic choice part for each Boolean variable bi. The left branch sets the
bits for the clauses that contain bi and the right branch those for the clauses
that contain bi. Every assignment can be bypassed by an empty edge in case
that the clause is also made true by another literal. It is now easy to see that
r is a may-constant of value 1 . . . 1︸ ︷︷ ︸

n times

(in (k + 1)-adic number representation)

if and only if the underlying instance of 3-SAT is satisfiable.
On the other hand, it is easy to see that detecting may-constancy is in NP

for acyclic control flow, since a non-deterministic Turing machine can guess
a witnessing path for a given constant in polynomial time. Thus, we have:

Theorem 2.4.5. May-constant propagation is in NP when restricted to
acyclic control flow.
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Table 2.2. Complexity of constant detection: preliminary summary.
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2.5 Summary

The decidability and complexity results of this chapter are summarized in
Table 2.2. Note that hardness results propagate from a class of constants to
more comprehensive classes of constants, i.e., downwards in the table, and
vice versa for easiness results. Moreover, hardness results for acyclic control
flow propagate to unrestricted control flow which explains the NP-hardness
entry for linear constants and unrestricted control flow.

The table shows that we have already gone a good deal of the way to-
wards classifying the complexity of the problems in our taxonomy of constant
propagation. In the next chapter we complement the negative results of this
chapter by positive results. Specifically, we attack Presburger and polynomial
must-constant propagation.



3. Deciding Constants by
Effective Weakest Preconditions

One goal of classifying the complexity of weakened versions of program-
analysis problems is to uncover potential for more precise analysis algorithms.
As witnessed by the white space in Table 2.2, three questions remained open
in the complexity classification of the previous chapter: there is no result
for Presburger must-constants and there are no upper bounds for polynomial
must-constants and Presburger may-constants. In this chapter we provide an-
swers for two of these questions that uncover algorithmic potential. We show
that Presburger must-constants can be detected in polynomial time and that
polynomial must-constants are decidable by developing corresponding algo-
rithms. These classes are interesting from a practical point of view because
the operators +,−, ∗ are very frequently used, e.g., for computing memory
addresses of array components. As we consider must-constants throughout
this chapter, we omit the qualifying prefix ‘must’ in the following.

The two algorithms share the same basic algorithmic idea. The main in-
gredient is effective computation of the weakest precondition of a certain as-
sertion. In this computation, assertions are represented by appropriate math-
ematical structures. In order to emphasize similarity of the algorithms and
to enable application to other scenarios, we develop a generic framework for
development of S-constant detection algorithms in Section 3.3. Afterwards,
we show how to apply it to detection of Presburger and polynomial constants.
In the algorithm for Presburger constants, which is discussed in Section 3.4,
assertions are represented by affine subspaces of Qn, where n is the num-
ber of variables in the underlying flow graph and well-known results from
linear algebra are exploited. In the algorithm for polynomial constants pre-
sented in Section 3.7, assertions are represented by the set of zeros of ideals of
Z[x1, . . . , xn], the ring of multi-variate polynomials in the variables x1, . . . , xn

with coefficients in Z. Here we rely on results from computable ring theory in
order to compute with ideals. We recall these less known results in Section 3.5
and describe some additional observations in Section 3.6.

In order to allow the reader to develop some intuition for the algorithms
before following the technical generic description in Section 3.3, we provide a
more illustrative and informal description of the Presburger constant- propa-
gation algorithm beforehand (Section 3.2). Before that we illustrate the power

M. Müller-Olm: Variations on Constants, LNCS 3800, pp. 31-52, 2006.
 Springer-Verlag Berlin Heidelberg 2006
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of the algorithms by discussing some examples of Presburger and polynomial
constants (Section 3.1).

3.1 Presburger and Polynomial Constants

Presburger constants are already beyond the scope of standard algorithms.
Consider, for instance, the two example flow graphs in Figure 3.1.

x := 0
y := 0

x := x - 1
y := y + 1

z := x + y

a) b)

a := 2

b := 3

a := 3

b := 2

c := 4

d := 5

c := 5

d := 4

x := a + c
y := b + d
z := x + y

Fig. 3.1. Presburger constants beyond the scope of standard algorithms.

Part (a) extends the classic example that the standard constant propaga-
tion algorithm, so-called simple constant propagation, is non-distributive (cf.
[30]). In this flow graph, z is a constant of value 14 at the end of the program.
However, none of its operands is constant, although both are defined outside
of any conditional branch. Simple constant propagation works by a forward
propagation of variable assignments of the form δ : X → Val∪{⊥,�}where X
is the set of program variables and Val is the value domain. It takes the meet
of variable assignments at join points. Already at the join point of the first
diamond this algorithm computes a variable assignment with δ(a) = δ(b) = ⊥
because the variables are assigned different values in the two branches and
there is no way to recover from this loss of precision.

Part (b) shows a small loop that simultaneously decrements x and in-
crements y. Obviously, z is a (Presburger) constant of value 0 at the end of
the program. However, this example is also outside the scope of any standard
algorithm and even outside the scope of Knoop and Steffen’s EXPTIME algo-
rithm for finite constants [89] because no finite unfolding of the loop suffices
to identify z as a constant. We should mention that Karr’s algorithm [39],
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which is briefly discussed in the conclusions of this chapter, is able to identify
z as a constant.

4

x := x2 + xy

3

x := xy − 6

x := x + 1
y := y − 1

y := 0

1

2

x := 2 x := 3
y := 3 y := 2

Fig. 3.2. A polynomial constant not detected by standard algorithms.

In Fig. 3.2, variable x is a (polynomial) constant of value 0 at node 4. For
similar reasons as above, no standard algorithms can handle this example.
Because constancy depends on the multiplications in the terms xy − 6 and
x2 +xy neither our Presburger constant-detection algorithm nor Karr’s algo-
rithm can handle this example, in contrast to our algorithm for polynomial
constants.

3.2 Presburger-Constant Detection at a Glance

For Presburger-Constant Detection we employ techniques known from linear
algebra. We use a backward analysis propagating sets of linear equations
describing affine vector spaces (over Q).

The Dataflow Framework. Given a set of program variables X = {x1, . . . , xn}
a linear equation is of the following form:

∑
i ai xi = b, where ai, b ∈ Q, i =

1, . . . , n. Since at most n of these linear equations are linearly independent,
an affine vector space can always be described by means of a linear equation
system Ax = b where A is a k × n-matrix over Q, 1 ≤ k ≤ n, and b ∈ Qk.
The affine vector sub-spaces of Qn are partially ordered by set inclusion. This
results in a (complete) lattice where the length of chains is bounded by n+1
as any affine space strictly contained in another affine space has a smaller
dimension (the summand 1 accounts for the empty space).
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The Meet Operation. The meet of two affine vector spaces represented by
the equations A1x = b1 and A2x = b2 can be computed by normalizing the
equation (

A1

A2

)
x=

(
b1

b2

)
which can be done efficiently using Gauss-elimination [72].

Local Transfer Functions. The local transfer functions of affine assignments
perform a backward substitution on the linear equations. For instance, the
equation 3x+y = 10 is backward-substituted along the assignment x := 2u−
3v + 5 towards 3 (2 u − 3 v + 5) + y = 10 which then can be “normalized”
towards y +6 u− 9 v = 5. Clearly, this can be done in polynomial time. After
this normalization, the resulting equation system is again simplified using
Gauss-elimination.

A linear equation that depends on x like 3x + y =10 cannot be generally
valid after a non-deterministic assignment x :=?. Such equations are thus
transformed along x :=? to unsatisfiable equations like 0 x = 1. Equations
that are independent of x are propagated unchanged. Non-affine assignments
are treated in the same way.

The Overall Procedure. Our backward dataflow analysis can be regarded as
a demand-driven analysis which works separately for each variable x and
program point u. Conceptually, it is organized in three phases:

Phase 1: Guess an arbitrary cycle-free path from the start node to u, for
instance using depth-first search, and compute the value c of x on this
path using, e.g., the value 0 as initial value of all variables.

Phase 2: Solve the backward dataflow analysis where initially the program
point u is annotated by the affine vector space described by the linear
equation x = c and all other program points by the universal affine space,
i.e., the one given by the empty equation system, i.e., the equation system
with zero equations.

Phase 3: The guess generated in Phase 1 is proved, if and only if the start
node is still associated with the universal affine vector space.1

The completeness of the algorithm is a consequence of the distributivity
of the analysis. Obviously, the guessed equation x = c is true iff the backward
substitution along every path originating at the start node yields a universally
valid constraint at the start node. Since this defines the meet-over-all-paths
solution of our dataflow framework the algorithmic solution is guaranteed to
coincide if the transfer functions are distributive, which is immediate from
the definition.

The algorithm can also be understood from a program verification point
of view. By Phase 1, c is the only candidate value for x being constant at
1 In practice, one may already terminate with the result of non-constancy of x

whenever a linear equation system encountered during the analysis is unsolvable.
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u. Phase 2 effectively computes the weakest (liberal) precondition of the
assertion x = c at program point n. Clearly, x is a constant at u if and only
if the weakest liberal precondition of x = c is universally valid. This point of
view is elaborated in the remainder of this chapter.

As mentioned, the length of the chains appearing at the program points
during Phase 2 of the analysis is bounded by n+1, where n is the number of
variables. Any change at a node can trigger a re-evaluation at its predecessor
nodes. Therefore, we have at most e · (n + 1) Gaussian elimination steps,
where e = |E| denotes the number of edges in the flow graph. Each Gaus-
sian elimination performs at most O(n3) arithmetic operations [72]. Thus,
the complete dataflow analysis for a single occurrence of a program variable
performs at most O(e ·n4) arithmetic operations. For an exhaustive analysis
that computes constancy information for any left-hand side occurrence of a
variable the estimation becomes O(p · e · n4), where p denotes the number of
program points in the flow graph.

Theorem 3.2.1. Presburger (must-)constants can be detected with polyno-
mially many arithmetic operations. ��

In order to achieve a truly polynomial running time, we must ensure in
addition that the length of all the numbers appearing in this computation
are polynomially bounded. For this we argue similarly as in [64]. It is well-
known that the numerators and denominators of the numbers appearing in
a Gaussian elimination over Q are determinants of minors of the original
matrix [72, Problem 11.5.3]. Therefore, their size is polynomially bounded in
the length of the numbers in the original matrices. In our algorithm these
numbers are obtained via propagation of the linear equation x = c. Thus, it
suffices to show that the length of the numbers in the propagated equations
is polynomially bounded.

For this, we observe first that Phase 1 of the algorithm evaluates at most
|N | assignment statements with an affine right hand side in order to determine
the candidate value c. This implies that the length of the (binary or decimal)
representation of c is polynomially bounded in the size of the input program.
The crucial idea to keep numbers small enough in the second phase is to
avoid propagating “simplified” equations that are achieved through Gaussian
elimination. Thus, whenever we observe that a propagated linear equation a
is not yet implied by the equations stored for a program point u, we propagate
the equation a itself via the ingoing edges to the predecessors of u instead of
some “simplified” equation. As a consequence, all the numbers in the matrices
on which Gaussian elimination is done are obtained by at most e · (n + 1)
backwards propagation steps from the linear equation x = c. As in each step
an affine expression appearing as a right hand side of an assignment in the
given program is substituted for a variable, the size of the resulting numbers
stays polynomially bounded as well.
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Summarizing, we have:

Theorem 3.2.2. Presburger (must-)constants can be detected in polynomial
time. ��

We now illustrate our algorithm by means of the example of Figure 3.1.

a+b+c = 9

x := 0
y := 0

z := x + y

a) b)

a := 2

b := 3

a := 3

b := 2

x := a + c
y := b + d
z := x + y

z = 14

a+b = 5

5 = 5

z = 0

x+y = 0
x := x - 1

y := y + 1

x+y = -1

0 = 0

c := 4

d := 5

c := 5

d := 4

a+b+c+d = 14

a+b+c = 10

Fig. 3.3. Deciding Presburger constants by backward propagation of linear equa-
tions.

The emphasized annotation of Figure 3.3 contains the linear equations
resulting from the initial guess z = 14 (in Figure 3.3(a)) and z = 0 (in Figure
3.3(b)), respectively. It should be noted that for the sake of presentation
we did not display the equations for every program point. The particular
power of this technique results from the normalization performed on the
linear equations which provides a handle to cope with arithmetic properties
like commutativity and associativity to a certain extent. For instance, the
equation a + b =5 in Figure 3.3(a) is the uniform result of two different
intermediate equations.

Let us briefly discuss the modifications for polynomial constant propaga-
tion. We use more expressive equations of the form p(x1, . . . , xn) = 0, where
p(x1, . . . , xn) is a multi-variate polynomial with coefficients in Z. A collection
of such equations represents the set of zeros of an ideal in Z[x1, . . . , xn]. Ex-
ploiting results from computable ring theory we can effectively compute with
such equations. In particular, we use Gröbner bases as canonic representation
of ideals and the Buchberger algorithm for simplification. While polynomial
assignments are handled analogously to affine assignments by backward sub-
stitution, the treatment of non-deterministic assignments needs a refinement.
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The reason is that an equations that depends on x can still be generally valid
for all values of x for certain values of other variables. The equation x y = 0,
for instance, is valid after x :=? if y = 0 is valid before.

After this informal presentation of the algorithms we are now ready for
the more formal generic description.

3.3 A Generic Algorithm

We assume the formal framework of Section 2.1. Suppose we are given a
variable x ∈ X and a program point w ∈ N . In this chapter we describe
a generic algorithm for deciding whether x is an S-constant at w or not.
While standard constant propagation works by forward propagation of vari-
able assignments, we use a three phase algorithm that employs a backwards
propagation of assertions, as we have seen in Section 3.2. For the moment we
can think of assertions as predicates on states as in program verification.

Phase 1: In the first phase we follow an arbitrary cycle-free path from s to
w, for instance using depth-first search, and compute the value c, referred
to as the candidate value, that x holds after this path is executed. This
implies that, if x is a constant at w, it must be a constant of value c.

Phase 2: In the second phase we compute the weakest precondition for the
assertion x = c at program point w in GS by means of a backwards
dataflow analysis.

Phase 3: Finally, we check whether the computed weakest precondition for
x = c at w is true, i.e., is valid for all states.

It is obvious that this algorithm is correct. The problem is that Phase 2
and 3 are in general not effective. However, as only assignments of a restricted
form appear in GS , the algorithm becomes effective for certain sets S, if
assertions are represented appropriately. In the remainder of this section we
analyze the requirements for adequate representations. For this purpose, we
first characterize weakest preconditions in flow graphs.

Semantically, an assertion is a subset of states φ ⊆ Σ. Given an assertion
φ and a statement s, the weakest precondition of s for φ, wp(s)(φ), is the
largest assertion φ′ such that execution of s from all states in φ′ is guaranteed
to terminate only in states in φ.2 The following identities for the weakest
precondition of assignment and skip statements are well-known:

wp(x := e)(φ) def= φ[e/x] def= {σ | σ[x �→ eσ] ∈ φ}
wp(x :=?)(φ) def= ∀x(φ) def= {σ | ∀d ∈ Z : σ[x �→ d] ∈ φ}
wp(skip)(φ) def= φ

2 In the sense of Dijkstra [17] this is the weakest liberal precondition as it does not
guarantee termination. For simplicity we omit the qualifying prefix “liberal” in
this chapter.
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These identities characterize weakest preconditions of basic statements. Let
us now consider the following more general situation in a given flow graph G =
(N, E, A, s, e): we are given an assertion φ ⊆ Σ as well as a program point
w ∈ N and we are interested in the weakest precondition that guarantees
validity of φ whenever execution reaches w. The latter can be characterized
as follows.

Let W0[w] = φ and W0[u] = Σ and consider the following equation system
consisting of one equation for each program point u ∈ N :

W[u] = W0[u] ∩
⋂

v∈Succ[u]

wp(A(u, v))(W[v]) . (3.1)

By the Knaster-Tarski fixpoint theorem, this equation system has a largest
solution (w.r.t. subset inclusion) because wp(s) is monotonic. By abuse of
notation, we denote the largest solution by the same letter W[u]. For each
program point u ∈ N , W[u] is the weakest assertion such that execution
starting from u with any state in W[u] guarantees that φ holds whenever ex-
ecution reaches w. In particular, W[s] is the weakest precondition for validity
of φ at w. The intuition underlying equation (3.1) is the following: firstly,
W0[u] must be implied by W[u] and, secondly, for all successors v, we must
guarantee that their associated condition W[u] is valid after execution of the
statement A(u, v) associated with the edge (u, v); hence wp(A(u, v))(W[v])
must be valid at utoo.

For two reasons, the above equation system cannot be solved directly in
general: firstly, because assertions may be infinite sets of states they cannot
be represented explicitly; secondly, there are infinitely long descending chains
of assertions such that we cannot guarantee that standard fixpoint iteration
terminates.

In order to construct an algorithm that detects S-constants we represent
assertions by the members of a lattice (D,�). For Presburger constants D is
the set of affine spaces of Qn and for polynomial constants the set of ideals
in Z[x1, . . . , xn]. We then simulate the iterative fixpoint computation for W
on the members of lattice D. In order to ensure termination, we require that
D has no infinite ascending chains. In order to ensure that the computed
result represents W precisely, we make sure (1) that the start value W0 is
represented precisely and (2) that the operations on D mirror the operations
on assertions precisely. These requirement are detailed below. Note that it
is a non-trivial fact that we can find such a lattice D for a certain set S
of expressions: if, for instance, S is the set of all integer expressions, such a
lattice cannot exist, because this would imply decidability of must-constancy.

Let us assume that γ : D → 2Σ captures how the lattice element represent
assertions. First of all, we require

(a) D has no infinite decreasing chains, i.e., there is no infinite chain d1 �
d2 � d3 � . . ..
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L′L
γ

f g

Fig. 3.4. Situation in the Transfer Lemma.

This guarantees that maximal fixpoints of monotonic functions can effectively
be computed by standard fixpoint iteration. Secondly, we suppose

(b) γ is universally conjunctive, i.e., γ(�X) =
⋂{γ(d) | d ∈ X} for all X ⊆ D.

The most important reason for this assumption is that it ensures that we can
validly compute on representations without losing precision: if we precisely
mirror the equations characterizing weakest preconditions on representations,
the largest solution of the resulting equation system on representations char-
acterizes the representation of the weakest precondition by the following well-
known lemma. It appears in the literature (for the dual situation of least
fixpoints) under the name Transfer Lemma [4] or µ-Fusion Rule [49].

Lemma 3.3.1 (Transfer Lemma). Suppose L, L′ are complete lattices, f :
L → L and g : L′ → L′ are monotonic functions and γ : L → L′ (cf. Fig. 3.4).

If γ is universally conjunctive and γ ◦ f = g ◦ γ then γ(νf) = νg, where
νf and νg are the largest fixpoints of f and g, respectively. ��
We must mirror all the object occurring in the equation system characterizing
weakest preconditions on representations precisely. Firstly, we must represent
the start value, W0. The fact that γ is universally conjunctive implies that
γ(�) = Σ, i.e., the top value of D is a precise representation of Σ. In addition,
we require:

(c) Assertion x = c can be represented precisely: for each x ∈ X , c ∈ Val we
can effectively determine dx=c ∈ D with γ(dx=c) = {σ ∈ Σ | σ(x) = c}.
Secondly, we need effective representations for the operators appearing in

equations. Requirement (b) implies that the meet operation of D precisely
abstracts intersection of assertions. In order to enable effective computation
of intersections, we require in addition:

(d) for given d, d′ ∈ D, we can effectively compute d � d′.

By induction this implies that we can compute finite meets d1 � . . . � dk

effectively.
The only remaining operations on assertions are the weakest precondition

transformers of basic statements. We must represent wp(x := t) for expres-
sions t ∈ S, which is the substitution operator (·)[t/x] on assertions. As the
S-constant detection algorithm computes the weakest precondition in weak-
ened flow graph GS , assignments x := t with t /∈ S do not occur.

(e) There is a computable substitution operation (·)[t/x] : D → D for each
x ∈ X , t ∈ S, which satisfies γ(d[t/x]) = γ(d)[t/x] for all d ∈ D.
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Obviously, wp(skip), the identity, is precisely represented by the identity on
R. Thus, it remains to represent wp(x :=?):

(f) There is a computable projection operation proj i : D → D for each
variable xi ∈ X such that γ(proj i(d)) = ∀xi(γ(d)) for all d ∈ D.

Finally, we need the following in order to make Phase 3 of the algorithm
effective.

(g) Assertion true is decidable, i.e., there is a decision procedure that decides
for a given d ∈ D, whether γ(d) = Σ or not.

If, for a given set S ⊆ Expr, we can find a lattice satisfying requirements
(a)–(g), we can effectively execute the three phase algorithm from the begin-
ning of this section by representing assertions by elements from this lattice.
This results in a detection algorithm for S-constants.

In this chapter we are interested in detection of Presburger and polyno-
mial constants. Thus, from now on, let Val = Z.

3.4 Detection of Presburger Constants

Before we turn attention to detection of polynomial constants let us explain
that the detection algorithm for Presburger constants that has informally
been presented in Section 3.2 is an instance of the generic algorithm described
in Section 3.3. Let S = {c0 +

∑n
i=1 cixi | c0, . . . , cn ∈ Z}. In the algorithm

of Section 3.2 assertions are represented by affine vector spaces in Qn. In
addition we need the empty set for representing the assertion false = ∅.
Thus, D = {z +U | z ∈ Qn, U is a subspace of Qn}∪{∅}. For the remainder
of this section, we adopt the convention to consider the empty set an affine
space. We write 0 for a matrix or vector with zero entries and rely on the
context to resolve the ambiguity inherent in this convention.

The order on D is set union: � = ⊆. From linear algebra we know that the
intersection of arbitrary affine spaces is again an affine space. Thus, (D,�)
is a complete lattice with intersection as its meet operation. Note, however,
that the join operation of this lattice, �, is different from set union ∪ because
the union of affine spaces is in general not an affine space. The join of a
family A ⊆ D is the smallest affine space that contains all members of A:⊔A =

⋂{B ∈ D | ∀A ∈ A : A ⊆ B}.
The representation mapping γ : D → 2Σ is defined by

γ(d) := {σ ∈ 2Σ | (σ(x1), . . . , σ(xn)) ∈ d} .

As we are using affine subspaces of Qn to represent assertions for integer vari-
ables, the representation mapping γ does two things. Firstly, it transfers the
tuple representation to a state representation which is merely an isomorphic
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transformation. Secondly, it selects the integer tuples from the given affine
space d ⊆ Qn.

From linear algebra we know that all affine spaces z + U ∈ D can be
represented by a matrix A ∈ Qk×n with k ≤ n and a (column) vector b ∈
Qk, such that z + U = {x ∈ Qn | Ax = b}. The empty set can also be
represented by a matrix and a vector, e.g., by A = (0, . . . , 0) and b = (1).
In the concrete algorithm the elements of D are represented in this way by
a matrix A and a vector b but this further representation step is suppressed
in this section. We show, however, that all the needed operations on affine
spaces can efficiently be performed on their representation by a matrix and a
vector. Conceptually, it is simpler to consider the affine spaces themselves as
representations because they are ordered. On pairs (A, b) we have only the
pre-order induced by their interpretation as affine spaces:

(A, b) ≤ (A′, b′) :⇔ {x | Ax = b} ⊆ {x | A′x = b′} .

Thus, in order to cover this further representation step also, we would need a
more general description of the generic algorithm that permits pre-orders as
representations. While it is not hard to develop this more general framework
it would obscure the presentation.

Let us now show that the requirements of the generic algorithm are sat-
isfied:

(a) For dimension reasons a properly decreasing chain of affine spaces can
have at most length n + 1.

(b) That the representation mapping γ is universally conjunctive is obvious
from the definition.

(c) For xi ∈ X and c ∈ Z, define dxi=c
def= {(c1, . . . , cn) ∈ Qn | ci = c}.

Obviously, this set can be represented by the matrix A = (a1j) ∈ Q1n

defined by a1i = 1 and a1j = 0 if j �= i and the vector b = (c): dxi=c =
{x ∈ Qn | Ax = b}. This also shows that dxi=c is indeed an affine space.

(d) If we are given two affine spaces d1 = {x ∈ Qn | A1x = b1} ∈ D and d2 =
{x ∈ Qn | A2x = b2} ∈ D we can effectively determine a representation
of d1 � d2 = d1 ∩ d2 by normalizing the following equation via Gauss
elimination: (

A1

A2

)
x =

(
b1

b2

)
.

(e) Suppose we are given xs ∈ X and e = c0 +
∑n

i=1 cixi ∈ S. For x =
(xi) ∈ Qn, let us write x[e/xs] for the vector y = (yi) ∈ Qn with ys =
c0 +

∑n
i=1 cixi and yi = xi for i �= s. We define the substitution operator

(·)[e/xs] : D → D by d[e/xs] = {x ∈ Qn | x[e/xs] ∈ d}. This definition
directly reflects the definition of substitution on assertions. Therefore,
the following lemma is obvious.

Lemma 3.4.1 (Adequacy). γ(d)[e/xs] = γ(d[e/xs]). ��
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The following lemma shows that and how the substitution operator can
(efficiently) be computed on representations of affine spaces via matri-
ces and vectors. It also implies that d[e/xs] is indeed an affine space
and thus ensures that (·)[e/xs] is well-defined. The lemma formalizes the
backwards substitution and subsequent normalization on linear equations
in the informal explanation of the local transfer functions of affine assign-
ments in Section 3.2.
Suppose we are given A = (aij) ∈ Qk×n and b = (bi) ∈ Qk such that
d = {x ∈ Qn | Ax = b}.
Lemma 3.4.2 (Computation). Let A′ = (a′

ij) ∈ Qk×n with a′
is :=

aiscs and a′
ij := aij + aiscj for j �= s, and b′ = (b′i) ∈ Qk with b′i :=

bi − aisc0.
Then: d[e/xs] = {x ∈ Qn | A′x = b′}.
Proof. Let x ∈ Qn and y = x[e/xs]. By the definitions, x ∈ d[e/xs] if and
only if Ay = b. By the definition of matrix multiplication this is the case
if and only if for all i, 1 ≤ i ≤ k,

n∑
j=1

aijyj = bi . (3.2)

As the sum on the left hand side can be rewritten as follows
n∑

j=1

aijyj =
n∑

j=1
j �=s

aijxj + ais(c0 +
n∑

j=1

cjxj) =
n∑

j=1

a′
ijxj + aisc0 ,

Equation (3.2) holds if and only if
∑n

j=1 a′
ijxj = bi − aisc0 = b′i . Conse-

quently, x ∈ d[e/xs] if and only if A′x = b′. ��
(f) Suppose we are given xs ∈ X . We define the projection operator proj xs

:
D → D on representations of affine spaces as follows: if d = {x ∈ Qn |
Ax = b} ∈ D then

proj xs
(d) =

{
d if ais = 0 for all i ∈ {1, . . . , k}
∅ otherwise .

This definition is motivated by the following intuition: a vector x = (xi) ∈
Zn (or x ∈ Qn, this doesn’t make any difference) satisfies all the linear
equations described by Ax = b for arbitrary variation of xs (in Z or Q)
if and only if all equations are independent of xs. A formalization of this
intuition yields:

Lemma 3.4.3 (Adequacy). ∀xs(γ(d)) = γ(proj xs
(d)). ��
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We leave the formal proof, which is similar to the proof of Lemma 3.4.5
below, to the reader.
It is also not hard to show that the above definition is independent of
the representation by a matrix A and vector b. The crucial lemma, the
proof of which is also left to the reader, is this:

Lemma 3.4.4 (Well-definedness). Let A = (aij) ∈ Qk×n, b ∈ Qk,
A′ = (a′

ij) ∈ Qk′×n, and b′ ∈ Qk′
. Suppose {x | Ax = b} = {x | A′x =

b′} �= ∅. Then: ais = 0 for all i = 1, . . . , k if and only if a′
is = 0 for all

i = 1, . . . , k′. ��
It is immediate from its definition that and how the projection operator
can efficiently be computed on the representation of an affine space via
a matrix A and a vector b. We only need to check whether the s’th
row of A is constantly 0; if this is the case, d is left unchanged by the
projection such that proj xs

(d) is again represented by A and b; otherwise
the projection of d is empty and we can use, e.g., A = (0, . . . , 0) and b =
(1) for representing proj xs

(d) because ∅ = {x ∈ Qn | (0, . . . , 0)x = 1}.
(g) In order to check whether an affine space d = {x ∈ Qn | Ax = b} ∈ D

given by matrix A and column vector b represents Σ we need only check
whether all entries of A and b are zero as witnessed by the following
lemma. Obviously this condition can efficiently be decided from A and b.

Lemma 3.4.5 (Test for true). γ({x ∈ Qn | Ax = b}) = Σ if and only
if A = 0 and b = 0.

Proof. By definition of γ, we have γ({x | Ax = b}) = Σ if and only if
Ad = b for all d ∈ Zn. We show that the latter condition holds if and
only if A = 0 and b = 0.
If, on the one hand, A = 0 and b = 0, then we clearly have Ad = 0 = b
for all d ∈ Zn. If, on the other hand, Ad = b holds for all d ∈ Zn, we
have, first of all, b = A0 = 0. Moreover, all entries of A must be zero: If A
has a non-zero entry, say ai,j , then the j’th component of its application
to the vector d = (dk) with di = 1 and dk = 0 for k �= i would be
aij �= 0 = bj . ��

3.5 A Primer on Computable Ideal Theory

They key idea for the detection of polynomial constants is to represent an
assertion by the zeros of an ideal in the polynomial ring Z[x1, . . . , xn] and to
apply techniques from computable ideal theory. While a full introduction to
this area is beyond the scope of this monograph, we recall in this section the
facts needed and make some additional observations in Section 3.6. Accessible
introductions can be found in standard textbooks on computer algebra. The
case of polynomial rings over fields is covered, e.g., by [16, 23, 95], while
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[55] treats the more general case of polynomial rings over rings, that is of
relevance here, as Z is an integral domain but not a field.

Recall that Z together with addition and multiplication forms a commu-
tative ring, i.e., a structure (R, +, ·) with a non-empty set R and two inner
operations + and · such that (R, +) is an Abelian group, · is associative and
commutative, and the distributive law a · (b + c) = a · b + a · c is valid for all
a, b, c ∈ R. On the set of polynomials, Z[x1, . . . , xn], we can define addition
and multiplication operations in the standard way; this makes Z[x1, . . . , xn]
a commutative ring as well.

A non-empty subset I ⊆ R of a ring R is called an ideal if a + b ∈ I and
r · a ∈ I for all a, b ∈ I, r ∈ R. The ideal generated by a subset B ⊆ R is

〈B〉 = {r1 · b1 + . . . + rk · bk | r1, . . . , rk ∈ R, b1, . . . , bk ∈ B} ,

and B is called a basis or generating system of I if I = 〈B〉. An ideal is
called finitely generated if it has a finite basis B = {b1, . . . , bm}. Hilbert’s
famous basis theorem tells us that Z[x1, . . . , xn] is Noetherian, since Z is
Noetherian, i.e., that there are no infinitely long strictly increasing chains
I1 ⊂ I2 ⊂ I3 ⊂ . . . of ideals in Z[x1, . . . , xn]. This implies that every ideal of
Z[x1, . . . , xn] is finitely generated.

It is crucial for our algorithm that we can compute effectively with ide-
als. While Hilbert’s basis theorem ensures that we can represent every ideal
of Z[x1, . . . , xn] by a finite basis, it does not give effective procedures for
basic questions like membership tests or equality tests of ideals represented
in this way. Indeed, Hilbert’s proof of the basis theorem was famous (and
controversial) at its time for its non-constructive nature.

Fortunately, the theory of Gröbner bases and the Buchberger algorithm
provide a solution for some of these problems. While a complete presentation
of this theory is way beyond the scope of this monograph—the interested
reader is pointed to the books mentioned above—a few sentences are in or-
der here. A Gröbner basis is a basis for an ideal that has particularly nice
properties. From any given finite basis of an ideal the Buchberger algorithm
effectively computes a Gröbner basis. There is a natural notion of reduction
of a polynomial with respect to a set of polynomials. Reduction of a polyno-
mial p with respect to a Gröbner basis always terminates and yields a unique
result. This result is the zero polynomial if and only if p belongs to the ideal
represented by the Gröbner basis. Hence reduction with respect to a Gröbner
basis yields an effective membership test, that in turn can be used to check
equality and inclusion of ideals.

In the terminology of [55], Z[x1, . . . , xn] is a strongly computable ring.
This implies that the following operations are computable for ideals I, I ′ ⊆
Z[x1, . . . , xn] given by finite bases B, B′ and polynomials p ∈ Z[x1, . . . , xn],
cf. [55]:

Ideal membership: Given an ideal I and a polynomial p. Is p ∈ I?
Ideal inclusion: Given two ideals I, I ′. Is I ⊆ I ′?
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Ideal equality: Given two ideals I, I ′. Is I = I ′?
Sum of ideals: Given two ideals I, I ′. Compute a basis for I+I ′ def= {p+p′ |

p ∈ I, p′ ∈ I ′}. As a matter of fact, I + I ′ = 〈B ∪B′〉.
Intersection of ideals: Given two ideals I, I ′. Compute a basis for I ∩ I ′.

It is straightforward (and well-known) that I + I ′ and I ∩ I ′ are again ideals
if I and I ′ are. We can use the above operations as basic operations in our
algorithms.

3.6 More About Z[x1, . . . , xn]

3.6.1 Z[x1, . . . , xn] as a Complete Lattice

Interestingly, the ideals in Z[x1, . . . , xn] form also a complete lattice under
subset inclusion ⊆. Suppose we are given a set I of ideals in Z[x1, . . . , xn].
Then the largest ideal contained in all ideals in I obviously is

⋂ I, and the
smallest ideal that contains all ideals in I is

∑ I := {r1 · a1 + . . . + rk · ak |
r1, . . . , rk ∈ Z[x1, . . . , xn], a1, . . . , ak ∈

⋃ I}. The least element of the lattice
is the zero ideal {0} that consists only of the zero polynomial and the largest
element is Z[x1, . . . , xn]. While this lattice does not have finite height it is
Noetherian by Hilbert’s basis theorem such that we can effectively compute
least fixpoints of monotonic functions on ideals of Z[x1, . . . , xn] by standard
fixpoint iteration.

3.6.2 Zeros

As mentioned, we represent assertions by the zeros of ideals in our algorithm.
A state σ is called a zero of polynomial p if pσ = 0; we denote the set of zeros
of polynomial p by Z(p). More generally, for a subset B ⊆ Z[x1, . . . , xn],
Z(B) = {σ | ∀p ∈ B : pσ = 0}. For later use some facts concerning zeros
are collected in the following lemma, in particular of the relationship of ideal
operations with operations on their zeros.

Lemma 3.6.1. Suppose B, B′ are sets of polynomials, q is a polynomial,
I, I ′ are ideals, and I is a set of ideals in Z[x1, . . . , xn].

1. If B ⊆ B′ then Z(B) ⊇ Z(B′).
2. Z(B) = Z(〈B〉) =

⋂
p∈B Z(p). In particular, Z(q) = Z(〈q〉).

3. Z(
∑I) =

⋂{Z(I) | I ∈ I}. In particular, Z(I + I ′) = Z(I) ∩ Z(I ′).
4. Z(

⋂ I) =
⋃{Z(I) | I ∈ I}, if I is finite. In particular, Z(I ∩ I ′) =

Z(I) ∪ Z(I ′).
5. Z({0}) = Σ and Z(Z[x1, . . . , xn]) = ∅.
6. Z(I) = Σ if and only if I = {0} = 〈0〉.

Proof. We only prove Property 4; the proof of the other properties is simpler
and is left to the reader. So suppose I = {I1, . . . , Ik} ⊆ Z[x1, . . . , xn] is a
finite set of ideals.
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‘⊇’:. Suppose σ ∈ ⋃{Z(I) | I ∈ I}. Then there is j ∈ {1, . . . , k} with
σ ∈ Z(Ij). Then, by Property 1, we have σ ∈ Z(Ij) ⊆ Z(

⋂ I) because
Ij ⊇

⋂ I.

‘⊆’:. We use contraposition. So suppose σ /∈ ⋃{Z(I) | I ∈ I}. Then we can
choose for each j = 1, . . . , k a polynomial pj ∈ Ij with pσ

j �= 0. For the product
of these polynomials we have

∏k
j=1 pj ∈

⋂ I and (
∏k

j=1 pj)σ =
∏k

j=1 pσ
j �= 0.

Hence, σ /∈ Z(
⋂ I). ��

Note that the assumption that I is finite is essential in Property 4: if we
choose, for instance, I = {(〈xi〉 | i > 1} we have Z(

⋂ I) = Z({0}) = Z but⋃{Z(I) | I ∈ I} = {0} because Z(〈xi〉) = Z(xi) = {0} for all i > 0.

3.6.3 Substitution

Suppose we are given a polynomial p ∈ Z[x1, . . . , xn] and a variable x ∈
X . We can define a substitution operation on ideals I as follows: I[p/x] =
({q[p/x] | q ∈ I}), where the substitution of polynomial p for x in q, q[p/x],
is defined as usual. By definition, I[p/x] is the smallest ideal that contains
all polynomials q[p/x] with q ∈ I. From a basis for I, a basis for I[p/x] is
obtained in the expected way: if I = 〈B〉, then I[p/x] = 〈{b[p/x] | b ∈ B}〉.
Thus, we can easily obtain a finite basis for I[p/x] from a finite basis for
I: if I = 〈b1, . . . , bk〉 then I[p/x] = 〈b1[p/x], . . . , bk[p/x]〉. Hence we can add
substitution to our list of computable operations.

The substitution operation on ideals defined in the previous paragraph
mirrors precisely semantic substitution in assertions which has been defined
in connection with wp(x := e).

Lemma 3.6.2. Z(I)[p/x] = Z(I[p/x]). ��
We leave the proof of this equation that involves the substitution lemma

known from logic to the reader.

3.6.4 Projection

In this section we define projection operators proj i, i = 1, . . . , n, such that
for each ideal I, Z(proj i(I)) = ∀xi(Z(I)). Semantic universal quantification
over assertions has been defined in connection with wp(x :=?).

A polynomial p ∈ Z[x1, . . . , xn] can uniquely be written as a polynomial
in xi with coefficients in Z[x1, . . . , xi−1, xi+1, xn], i.e., in the form p = ckxk

i +
. . . + c0x

0
i , where c0, . . . , ck ∈ Z[x1, . . . , xi−1, xi+1, xn], and ck �= 0 if k > 0.

We call c0, . . . , ck the coefficients of p with respect to xi and let Ci(p) =
{c0, . . . , ck}.
Lemma 3.6.3. ∀xi(Z(p)) = Z(Ci(p)).

Proof. Let p = ckxk
i + . . . + c0x

0
i with Ci(p) = {c0, . . . , ck}.
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‘⊇’:. Let σ ∈ Z(Ci(p)). We have c
σ[xi �→d]
j = cσ

j = 0 for all d ∈ Z, j =

0, . . . , k, because cj is independent of xi. Hence, pσ[xi �→d] = c
σ[xi �→d]
k dk + . . .+

c
σ[xi �→d]
0 d0 = 0dk + . . . + 0d0 = 0 for all d ∈ Z, i.e. σ ∈ ∀xi(Z(p)).

‘⊆’:. Let σ ∈ ∀xi(Z(p)). Again, we have c
σ[xi �→d]
j = cσ

j for all d ∈ Z, j =
0, . . . , k, because ck is independent of xi. Therefore, cσ

kdk + . . . + cσ
0d0 =

c
σ[xi �→d]
k dk + . . . + c

σ[xi �→d]
0 d0 = pσ[x �→d] = 0 for all d ∈ Z because of σ ∈

∀xi(Z(p)). This means that the polynomial cσ
kxk

i + . . .+ cσ
0x0

i vanishes for all
values of xi. Hence, it has more than k zeros which implies that it is the zero
polynomial. Consequently, cσ

j = 0 for all j = 0, . . . , k, i.e., σ ∈ Z(Ci(p)). ��
Suppose I ⊆ Z[x1, . . . , xn] is an ideal with basis B.

Lemma 3.6.4. ∀xi(Z(I)) = Z(
⋃

f∈B Ci(f)).

Proof. The proof is by the following calculation: ∀xi(Z(I)) = ∀xi(Z(B)) =
∀xi(

⋂
p∈B Z(p)) =

⋂
p∈B ∀xi(Z(p)) =

⋂
p∈B(Z(Ci(p))) = Z(

⋃
p∈B Ci(p)). ��

In view of this formula, it is natural to define proj i(I) = (
⋃

p∈B Ci(p))
where B is a basis of I. It is not hard but tedious to show that this definition
is independent of the basis; we leave this proof to the reader. Obviously, proj i

is effective: if I is given by a finite basis {b1, . . . , bk} then proj i(I) is given by
the finite basis

⋃k
j=1 Ci(bj).

Corollary 3.6.1. ∀xi(Z(I)) = Z(proj i(I)).

Proof. ∀xi(Z(I)) = Z(
⋃

p∈B Ci(p)) = Z((
⋃

p∈B Ci(p))) = Z(proj i(I)). ��

3.7 Detection of Polynomial Constants

We represent assertions by ideals of the polynomial ring Z[x1, . . . , xn] in the
detection algorithm for polynomial constants. Thus, let D be the set of ideals
of Z[x1, . . . , xn]) and � be ⊇. The representation mapping is γ(I) = Z(I).
Note that the order is reverse inclusion of ideals. This is because larger ideals
have smaller sets of zeros. Thus, the meet operation is the sum operation of
ideals and the top element is the ideal {0} = 〈0〉.

In a practical algorithm, ideals are represented by finite bases. For trans-
parency, we suppress this further representation step but ensure that only
operations that can effectively be computed on bases are used.

The lattice (D,⊇) satisfies requirements (a)–(g) of Section 3.3:

(a) Z[x1, . . . , xn] is Noetherian.
(b) By the identity Z(

∑I) =
⋂{Z(I) | I ∈ I}, Z is universally conjunctive.

(c) Suppose x ∈ X and c ∈ Z. Certainly, a state is a zero of the ideal
generated by the polynomial x − c if and only if it maps x to c. Hence,
we choose dx=c as the ideal 〈x− c〉 generated by x− c.
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(d) In Section 3.5 we have seen that the sum of two ideals can effectively be
computed on bases.

(e) By Section 3.6.3, (·)[p/x] is an adequate, computable substitution oper-
ation.

(f) Again by Section 3.6.4, proj i is an adequate, computable projection op-
eration.

(g) We know that Z(I) = Σ if and only if I = {0}. Moreover, the only basis
of the ideal {0} is {0} itself. Hence, in order to decide whether an ideal I
given by a basis B represents Σ, we only need to check whether B = {0}.

We can thus apply the generic algorithm from Section 3.3 for the detection of
polynomial constants. In order to make this more specific, we put the pieces
together, and describe the resulting algorithm in more detail.

Suppose we are given a variable x ∈ X and a program point w ∈ N in a
flow graph G = (N, E, A, s, e). Then the following algorithm decides whether
x is a polynomial constant at w or not:

Phase 1: Determine a candidate value c ∈ Z for x at w by executing an
arbitrary (cycle-free) path from s to w.

Phase 2: Associate with each edge (u, v) ∈ E a transfer function f(u,v) :
D → D that represents wp(AS(u, v)):

f(u,v)(I) =




I if A(u, v) = skip
I[p/x] if A(u, v) = (x := p) with p ∈ Z[x1, . . . , xn]
proj x(I) if A(u, v) = (x := t) with t /∈ Z[x1, . . . , xn]
proj x(I) if A(u, v) = (x :=?)

Set A0[w] = 〈x− c〉 and A0[u] = 〈0〉 for all u ∈ N\{w} and compute the
largest solution (w.r.t. �=⊇) of the equation system

A[u] = A0[u] +
∑

v∈Succ[u]

f(u,v)(A[v]) for each u ∈ N .

We can do this as follows. Starting from A0[u] we iteratively compute,
simultaneously for all program points u ∈ N , the following sequences of
ideals

Ai+1[u] = Ai[u] +
∑

v∈Succ[u]

f(u,v)(Ai[v]) .

We stop upon stabilization, i.e., when we encounter an index is such that
Ais+1[u] = Ais [u] for all u ∈ N . Obviously, A0[u] ⊆ A1[u] ⊆ A2[u] ⊆ . . .,
such that computation must terminate eventually because Z[x1, . . . , xn]
is Noetherian. In this computation we represent ideals by finite bases and
perform Gröbner-basis computations in order to check whether Ai+1[u] =
Ai[u].3

3 As Ai+1[u] ⊇ Ai[u] by construction, it suffices to check Ai+1[u] ⊆ Ai[u].
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Phase 3: Check if the ideal computed for the start node, Ais [s], is 〈0〉. If
so, x is a polynomial constant of value v at w; otherwise, x is not a
polynomial constant at w.

Phase 2 can be seen as a backwards dataflow analysis in a framework in
which ideals of Z[x1, . . . , xn] constitute dataflow facts, the transfer functions
are the functions f(u,v) specified above, and the start value is A0. Of course,
we can use any evaluation strategy instead of naive iteration.

These considerations prove:

Theorem 3.7.1. Polynomial constants are decidable. ��
We do not know any complexity bound for our algorithm. Our termina-

tion proof relies on Hilbert’s basis theorem and its standard proof is non-
constructive and does not provide an upper bound for the maximal length of
strictly increasing chains of ideals. Therefore, we cannot bound the number
of iterations performed by our algorithm.

3.8 Conclusion

In this chapter we have shown that Presburger constants can be detected in
polynomial time and that polynomial constants are decidable. These classes
are interesting from a practical point of view because the sets of operators
+,− and +,−, ∗, respectively, are very frequently used, e.g., for comput-
ing memory addresses of array components. The algorithm for Presburger
constants has first been sketched in [60] while the algorithm for polynomial
constants has been presented at the Static Analysis Symposium 2002 [62].

The polynomial-constant detection algorithm can easily be extended to
handle conditions of the form p �= 0 with p ∈ Z[x1, . . . , xn]. The weakest
precondition is wp(p �= 0)(φ) = (p �= 0 ⇒ φ) = (p = 0 ∨ φ) and if φ is
represented by an ideal I, the assertion p = 0 ∨ φ is represented by the ideal
I ∩ 〈p〉 according to Lemma 3.6.1. This observation can be used to handle
such conditions in our algorithm. We can extend this easily to an arbitrary
mixture of disjunctions and conjunctions of conditions of the form p �= 0. Of
course, we cannot handle the dual form of conditions, p = 0: with both types
of conditions we can obviously simulate two-counter machines. In contrast,
the Presburger constant detection algorithm cannot easily be extended to
conditions as affine spaces are not closed under union.

The detection algorithms of this chapter use an indirect three phase ap-
proach; the main work is done in the second phase. In the first phase a
candidate value is computed that is verified in the second and third phase by
means of a symbolic weakest precondition computation. We have analyzed
the demands for making this general algorithmic idea effective which results
in a generic framework for the construction of S-constant-propagation algo-
rithms. Assertions are represented by affine subspaces of Qn for Presburger
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constants and by ideals in the polynomial ring Z[x1, . . . , xn] for polynomial
constants.

We have exploited the idea of effective weakest precondition computations
also in recent related work on interprocedural computation of affine invari-
ants [65, 66] and in work on intra- and interprocedural analysis relative to
Herbrand interpretation [67, 68]. Related to Presburger constant detection is
also recent work by Gulwani and Necula on likely affine invariants [27, 28].
Computable ring theory has been used in recent related program analysis
research by Colón, Manna, Sankaranarayanan and Sipma, e.g., [11, 84, 10],
Rodŕıguez-Carbonell, and Kapur, e.g., [82, 81], and ourselves [63]. However,
up to our knowledge, our conference paper [62] that originally proposed the
algorithm for detection of polynomial constants described in this chapter
preceeded all this work.

Standard constant propagation relies on forward propagation while we use
backwards propagation of assertions here. Interestingly, Presburger constants
can also be detected by forward propagation of affine spaces. In a seminal
paper, Karr [39] describes such an algorithm. His algorithms computes valid
affine relationships by forward propagation of affine spaces. It can be used
for constant detection and can be shown to find all Presburger constants.
While Karr discusses in his paper neither completeness issues nor means for
controlling growth of number representations, we proposed in [64] a version of
Karr’s algorithm that avoids exponential growth of numbers, improves upon
the asymptotic running time of his original algorithm, and has a completeness
guarantee that ensures that all Presburger constants are found.

In forward propagation of affine spaces we effectively compute strongest
postconditions rather than weakest preconditions. This computation involves
union of assertions rather than intersection. Because affine spaces are not
closed under union, Karr defines a (complicated) union operator of affine
spaces that over-approximates their actual union by an affine space. One is
tempted to consider forward propagation of ideals of Z[x1, . . . , xn]. At first
glance, this idea looks promising, because ideals are closed under intersection
and intersection of ideals corresponds to union of their sets of zeros, such that
we can even precisely represent the union of assertions. There is, however,
another problem: Z[x1, . . . , xn] is not ‘co-Noetherian’, i.e., there are infinitely
long strictly decreasing chains of ideals, e.g., 〈x〉 ⊃ 〈x2〉 ⊃ 〈x3〉 ⊃ . . .. There-
fore, strongest postcondition computations with ideals cannot be guaranteed
to stabilize in general and widening must be used to enforce termination.

Our approach to compute weakest preconditions symbolically with ef-
fective representations is closely related to abstract interpretation [14, 15].
Requirement (b) of the generic algorithm – the representation mapping
γ : D → 2Σ is universal conjunctive – implies that γ has a lower adjoint,
i.e., that there is a monotonic mapping α : 2Σ → D such that (α, γ) is a Ga-
lois connection [52]. In the standard abstract interpretation framework, we
are interested in computation of least fixpoints and the lower adjoint, α, is the
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Table 3.1. Complexity of constant detection: final summary.
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abstraction mapping. Here, we are in the dual situation: we are interested in
computation of greatest fixpoints. Thus, the role of the abstraction is played
by the upper adjoint, γ : D → 2Σ. Funnily, this means that in a technical
sense the members of D provide more concrete information than the members
of 2Σ and that we compute on the concrete side of the abstract interpretation.
Thus, we interpret the lattice D as an exact partial representation rather than
an abstract interpretation. The representation via D is partial because it does
not represent all assertions exactly; this is indispensable due to countability
reasons because we cannot represent all assertions effectively. It is an exact
representation because it allows us to infer the weakest preconditions arising
in the S-constant algorithms precisely, which is achieved by ensuring that the
initial value of the fixpoint computation is represented exactly and that the
occurring operations on representations mirror the corresponding operations
on assertions precisely.

By the very nature of Galois connections, the representation mapping γ
and its lower adjoint α satisfy the two inequalities α◦γ � IdD and Id2Σ ⊆ γ◦α,
where IdD and Id2Σ are the identities on D and 2Σ, respectively. Interestingly,
none of these inequalities degenerates to an equality when we represent asser-
tions by ideals of Z[x1, . . . , xn] as in our algorithm for detection of polynomial
constants. On the one hand, γ ◦ α �= Id2Σ because the representation is nec-
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essarily partial. On the other hand, α ◦ γ �= IdD because the representation
of assertions is not unique. For example, if p ∈ Z[x1, . . . , xn] does not have
a zero in the integers, we have Z(〈p〉) = ∅ such that Z(〈p〉) = Z(〈1〉) =
Z(Z[x1, . . . , xn]). But by undecidability of Hilbert’s tenth problem, we can-
not decide whether we are faced with such a polynomial p and thus cannot
effectively identify 〈p〉 and 〈1〉. This forces us to work with a non-unique
representation. While we cannot decide whether the set of zeros of an ideal I
given by a basis B is empty, we can decide whether it equals Σ because this
only holds for I = 〈0〉. Fortunately, this is the only question that needs to be
answered for the weakest precondition.

As a consequence of non-uniqueness, the weakest precondition computa-
tion on ideals does not necessarily stop once it has found a collection of ideals
that represents the largest fixpoint on assertions but may proceed to larger
ideals that represent the same assertions. Fortunately, we can still prove ter-
mination by arguing on ideals directly.

The decidability and complexity results of this and the previous chapter
are summarized in Table 3.1. We almost completely succeeded in filling the
white fields of Table 2.1. As apparent, only two questions are unsolved so
far. Firstly, there is a gap between the lower bound (PSPACE-hardness) and
the upper bound (decidability) for polynomial must-constants. Secondly, we
miss an upper bound for linear may-constants. To attack these problems
opens up opportunities for future research. The table shows that detection of
may-constants is significantly harder than detecting their must-counterparts.
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Automatic analysis of parallel programs is known as a notoriously hard prob-
lem. A well-known obstacle is the so-called state-explosion problem: the num-
ber of (control) states of a parallel program grows exponentially with the
number of parallel components. Therefore, most practical flow analysis algo-
rithms of concurrent programs conservatively approximate the effects arising
from interference of different threads in order to achieve efficiency. A recent
survey on practical research towards analysis of concurrent programs with
many references is provided by Rinard [80]. In contrast to this research, we
are interested in analyses of parallel programs that are exact (or precise) ex-
cept for the common abstraction of guarded branching to non-deterministic
branching that is well-known from analysis of sequential programs.

Surprisingly, certain basic but important dataflow analysis problems can
still be solved precisely and efficiently for programs with a fork/join kind
of parallelism. Results of this kind have been obtained by extending fix-
point computation techniques common in classic dataflow analysis to paral-
lel programs [44, 41, 85] and by automata-theoretic techniques [18, 19]. The
most general result so far shown by Seidl and Steffen [85] is that all gen/kill
problems1 can be solved interprocedurally in fork/join parallel programs effi-
ciently and precisely. This comprises the important class of bit-vector analy-
ses, e.g., live/dead variable analysis, available expression analysis, and reach-
ing definitions analysis [56]

In this chapter, we consider the question whether these results can be
generalized to richer classes of dataflow problems. For this purpose we investi-
gate the complexity of copy-constant detection [20]. Copy-constant detection
may be seen as a canonic representative of the next level of difficulty be-
yond gen/kill problems. In the sequential setting it gives rise to a distributive
dataflow framework on a lattices with a small chain height and can thus—by
the classic result of Kildall [40, 56]—completely and efficiently be solved by
a fixpoint computation.

Specifically, we show by means of a reduction from the halting problem
for two-counter machines that copy-constant detection is undecidable in par-

1 Gen/kill problems are characterized by the fact that all transfer functions are of
the form (λx : (x ∧ a) ∨ b), where a, b are constants from the underlying lattice
of dataflow facts.

M. Müller-Olm: Variations on Constants, LNCS 3800, pp. 53-79, 2006.
 Springer-Verlag Berlin Heidelberg 2006
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allel programs with procedures (parallel interprocedural analysis). We refine
this result by proving copy-constant detection to be PSPACE-complete in
case that there are no procedure calls (parallel intraprocedural analysis), and
co-NP-complete if also loops are abandoned (parallel acyclic analysis). The
latter results are shown by means of reductions from the intersection problem
for regular and star-free regular expressions, respectively. These reductions
have first been presented at the ACM Symposium on Theory of Comput-
ing (STOC 2001) [61]. They render the possibility of complete and efficient
dataflow algorithms for parallel programs for more extensive classes of anal-
yses unlikely even for loop-free programs, as it is generally believed that the
inclusions P ⊆ co-NP ⊆ PSPACE are proper.

The prototypic framework in which these results are obtained poses only
weak requirements such that the results apply to many concurrent program-
ming languages. In particular the results are independent of synchroniza-
tion operations which distinguishes them from previous intractability and
undecidability results for synchronization-sensitive flow analysis in parallel
languages [91, 77]. They should also be compared to undecidability of LTL
model-checking for parallel languages as proved by Bouajjani and Habermehl
[6]. While Bouajjani and Habermehl also consider a parallel language without
explicit synchronization operations, they use the LTL formula to synchronize
the runs of two parallel threads that simulate a two-counter machine. Thus,
our results point to a more fundamental limitation for flow analysis of parallel
programs as they exploit no synchronization properties.

One remark concerning the parallel composition operator is in order here.
It is inherent in the definition of parallel composition that π1 ‖ π2 termi-
nates if and when both threads π1 and π2 terminate (like, for instance, in
OCCAM [33]). This means that there is an implicit synchronization between
π1 and π2 at the termination point. However, as explained in Section 4.6, the
hardness results remain valid without this assumption. Therefore, they also
apply to languages like JAVA in which spawned threads run and terminate
independently of the spawning thread.

In order to perform our reductions without relying on synchronization
we use a subtle technique involving re-initialization of variables. In all re-
ductions programs are constructed in such a way that certain well-behaved
runs simulate some intended behavior, e.g., the execution sequences of the
given two-counter machine in the undecidability proof. But we cannot avoid
that the constructed programs have also certain runs that bear no correspon-
dence to the behavior to be simulated. Let us call such runs spurious runs.
One would typically use synchronization to exclude spurious runs but in the
absence of synchronization primitives this is not possible. In order to solve
this problem, we ensure by well-directed re-initialization of variables that the
spurious runs do not contribute to the information that is to be determined
by the analysis. In order to verify this crucial property in the reductions, we
present formal program proofs in the style of Owicki and Gries [71, 21, 3] for
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a := 1

fork

a := 0

b := 0

write(b)

join

b := a b := 0

a := 0

fork

a := 1

b := a

write(b)

join

(b)  Def/use relationships(a)  CFG−like representation

Fig. 4.1. An illustrative example.

the programs constructed in the reductions. Intuitively, one may interpret the
well-directed re-initialization of variables as a kind of “internal synchroniza-
tion”. However, in contrast to synchronization well-directed re-initialization
does not prohibit execution of spurious runs from happening; it only ensures
that spurious runs do not influence the analysis result.

In this chapter we assume that each basic statement executes as an atomic
step, a standard assumption in verification and analysis of concurrent pro-
grams. Although we use only basic statements of a very simple form, we will
see in the remaining chapters that this assumption is not as innocent as it
may seem: interprocedural copy-constant detection becomes indeed decid-
able in parallel programs if this assumption is abandoned as we will see in
Chapter 8.

4.1 A Motivating Example

Before we turn to the technical results, let us discuss a small example that
illustrates the subtlety of copy-constant detection in parallel programs and
the crucial re-initialization technique in our reductions. Consider the program

a := 1; [(a := 0; b := 0;write(b)) ‖ b := a] .

In Fig. 4.1 (a) a control flow graph-like representation of the program is
shown and in (b) the def/use relationships between the basic statements.
There is a def/use relationship from a statement S to a statement T if there
is a program execution in which S updates a variable that is later referenced
by T without another update of this variable in between.
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Although there is a path in the graph of def/use edges from the initial-
ization a := 1 to the instruction write(b), b is a (copy) constant of value
0 at the write instruction. In order to see this, consider the following. In
any execution, b := 0 must be executed either after or before b := a in the
parallel thread. If it is executed after b := a then b certainly holds 0 at the
write statement because 0 is assigned to b in the last executed assignment,
b := 0. On the other hand, if b := 0 is executed before b := a then also the
re-initialization of a, a := 0, must have been executed before b := a such
that b := a also loads the value 0 to b. Note that this reasoning exploits the
causality inherent in sequential composition.

From this example we learn two things. Firstly, a thread can prohibit a
parallel thread from propagating an ‘interesting’ value via a copying assign-
ment b := a by re-initializing first a and then b with an ‘uninteresting’ value.
This is exploited in the reductions. Secondly, transitive relationships in the
graph of def/use edges do not necessarily correspond to indirect dependences
that can be realized in executions, in contrast to the (intraprocedural) se-
quential case. Following transitive relationships in the def/use graph is thus
an incomplete (albeit sound) approach for dependency analysis in parallel
program. Thus, while we can efficiently determine the def/use relationships
in a parallel program—this is a bit-vector problem—this information is not
as useful as in a sequential program.

4.2 Parallel Programs

We consider a prototypic language with shared memory, atomic assignments
and fork/join parallelism. A procedural parallel program comprises a finite set
Proc of procedure names containing a distinguished name Main . Each proce-
dure name P is associated with a statement πP , the corresponding procedure
body, constructed according to the following grammar, in which Q ranges over
Proc \ {Main} and x over some given finite set of variables:

e ::= c | x
π ::= x := e | write(e) | skip | Q | π1 ; π2 |

π1 ‖ π2 | π1 � π2 | loop π end .

We use the syntax procedure P ; πP end to indicate the association of pro-
cedure bodies to procedure names. Note that procedures do not have param-
eters.

The specific nature of constants and the domain in which they are inter-
preted is immaterial; we only need that 0 and 1 are two constants representing
different values, which—by abuse of notation—are denoted by 0 and 1, too.
In other words we only need Boolean variables. The atomic statements of
the language are assignment statements x := e that assign the current value
of e to variable x, the do-nothing statement skip, and write statements.
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In our programs we use a write statement write(x) to mark the program
point where we are interested in constancy of a variable x; this is the only
purpose of write instructions. A statement of the form Q denotes a call of
procedure Q. The operator ; denotes sequential composition and ‖ paral-
lel composition. The operator � represents non-deterministic branching and
loop π end stands for a loop that iterates π an indefinite number of times.
Such constructs are chosen in accordance with the abstraction of guarded
branching to non-deterministic branching discussed in the introduction. We
apply the non-deterministic choice operator also to finite sets of statements;
�{π1, . . . , πn} denotes π1 � · · · �πn. The ambiguity inherent in this notation
is harmless because � is commutative, associative, and idempotent semanti-
cally.

Note that there are no synchronization operations in the language. The
synchronization of start and termination inherent in fork- and join-parallelism
is also not essential for our results; see Section 4.6.

Parallelism is understood in an interleaving fashion; assignments and write
statements are assumed to be atomic. A run of a program is a maximal
sequence of atomic statements that may be executed in this order in an
execution of the program. The program (x := 1 ;x := y) ‖ y := x, for exam-
ple, has the three runs 〈x := 1, x := y, y := x〉, 〈x := 1, y := x, x := y〉, and
〈y := x, x := 1, x := y〉. We denote the set of runs of program π by Runs(π).

Note that the prototypic language has only assignments of a very simple
form: x := k where k is either a constant or a variable. These are just the
assignments that are interpreted in copy-constant detection. Consequently,
for the prototypic language, constants and copy constants coincide. Hardness
results for constant detection in programs of this prototypic language can
immediately be interpreted as hardness results for copy-constant detection
in more general parallel languages. This justifies to identify for the purpose of
this chapter the copy-constant detection problem in parallel programs with
the detection problem of constants in programs of the prototypic language.

4.3 Interprocedural Copy-Constant Detection

The goal of this section is to prove the following theorem.

Theorem 4.3.1. Parallel interprocedural copy-constant detection is unde-
cidable.

It is well-known that the termination problem for two-counter machines
is undecidable [54]. In the remainder of this section, we reduce this prob-
lem to an interprocedural copy-constant detection problem thereby proving
Theorem 4.3.1.
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4.3.1 Two-Counter Machines

A two-counter machine has two counter variables c0 and c1 that can be in-
cremented, decremented, and tested against zero. It is common to use a com-
bined decrement- and test-instruction in order to avoid complications with
decrementing a zero counter. The basic idea of our reduction is to represent
the values of the counters by the stack height of two threads of procedures
running in parallel. Incrementing a counter is represented by calling another
procedure in the corresponding thread, decrementing by returning from the
current procedure, and the test against zero by using different procedures
at the first and the other stack levels that represent the possible moves for
zero and non-zero counters, respectively. It simplifies the argumentation if
computation steps involving the two counters alternate. This can always be
enforced by adding skip-instructions that do nothing except of transferring
control.

Formally, we use the following model. A two-counter machine M com-
prises a finite set of (control) states S. S is partitioned into two sets
P = {p1, . . . , pn} and Q = {q1, . . . , qm}; moves involving counter c0 start
from P and moves involving counter c1 from Q. Execution commences at a
distinguished start state which, without loss of generality, is p1. There is also
a distinguished final state, without loss of generality pn, at which execution
terminates. Each state s ∈ S except of the final state pn is associated with
an instruction I(s) taken from the following selection:

– ci := ci + 1;goto s′ (increment),
– if ci = 0 then goto s′ else ci := ci − 1; goto s′′ (test-decrement), or
– goto s′ (skip),

where i = 0 and s′, s′′ ∈ Q if s ∈ P , and i = 1 and s′, s′′ ∈ P if s ∈ Q. Note
that this condition captures that moves alternate.

Execution of a two-counter machine M is represented by a transition
relation→M on configurations 〈s, x0, x1〉 that consist of a current state s ∈ S
and current values x0 ≥ 0 and x1 ≥ 0 of the counters. Configurations with
s = pn are called final configurations. We have 〈s, x0, x1〉 →M 〈s′, x′

0, x
′
1〉 if

and only if one of the following conditions is valid for i = 0, 1:

– I(s) = ci := ci + 1;goto s′, x′
i = xi + 1, and x′

1−i = x1−i.
– I(s) = if ci = 0 then goto s′ else ci := ci − 1; goto s′′, xi = 0, x′

i = xi,
and x′

1−i = x1−i.
– I(s) = if ci = 0 then goto s′′ else ci := ci − 1; goto s′, xi �= 0, x′

i = xi−1,
and x′

1−i = x1−i.
– I(s) = goto s′, x′

i = xi, and x′
1−i = x1−i.

Thus, each non-final configuration has a unique successor configuration. We
denote the reflexive transitive closure of →M by →∗

M and omit the subscript
M if it is clear from the context.
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procedure P0;
loop

�{p := xk ;KillAllP ; yl := p ; P�=0 |
I(pk) = c0 := c0 + 1;goto ql} �

�{p := xk ;KillAllP ; yl := p |
I(pk) = if c0 = 0 then goto ql else . . .} �

�{p := xk ;KillAllP ; yl := p | I(pk) = goto ql}
end
end

procedure P�=0;
loop

�{p := xk ;KillAllP ; yl := p ; P�=0 |
I(pk) = c0 := c0 + 1;goto ql} �

�{p := xk ;KillAllP ; yl := p | I(pk) = goto ql}
end ;
�{p := xk ;KillAllP ; yl := p |

I(pk) = if c0 = 0 then . . . else . . . goto ql}
end

procedure KillAllP ;
y1 := 0 ; . . . ; ym := 0 ; q := 0 ; x1 := 0 ; . . . ; xn := 0
end

Fig. 4.2. Definition of P0 and P�=0.

Execution of a two-counter machine commences at the start state with
the counters initialized by zero, i.e. in the configuration 〈p1, 0, 0〉. The two-
counter machine terminates if it ever reaches the final state, i.e. if 〈p1, 0, 0〉 →∗

〈pn, x0, x1〉 for some x0, x1. As far as the halting behavior is concerned, we
can assume without loss of generality that both counters are zero upon ter-
mination. This can be ensured by adding two loops at the final state that
iteratively decrement the counters until they become zero. Obviously, this
modification preserves the termination behavior of the two-counter machine.
Note that for the modified machine the conditions “〈p1, 0, 0〉 →∗ 〈pn, x0, x1〉
for some x0, x1” and “〈p1, 0, 0〉 →∗ 〈pn, 0, 0〉” are equivalent. We assume in
the following that such loops have been added to the given machine.

4.3.2 Constructing a Program

From a two-counter machine we construct a parallel program, πM . For each
state pk ∈ P the program uses a variable xk and for each state ql ∈ Q a
variable yl. Intuitively, xk holds the value 1 in an execution of the program
iff this execution corresponds to a run of the two-counter machine reaching
state pk, and similarly for the yl.
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procedure Q0;
loop

�{q := yk ;KillAllQ ; xl := q ; Q �=0 |
I(qk) = c1 := c1 + 1;goto pl} �

�{q := yk ;KillAllQ ; xl := q |
I(qk) = if c1 = 0 then goto pl else . . .} �

�{q := yk ;KillAllQ ; xl := q | I(qk) = goto pl}
end
end

procedure Q �=0;
loop

�{q := yk ;KillAllQ ; xl := q ; Q �=0 |
I(qk) = c1 := c1 + 1;goto pl} �

�{q := yk ;KillAllQ ; xl := q | I(qk) = goto pl}
end ;
�{q := yk ;KillAllQ ; xl := q |

I(qk) = if c1 = 0 then . . . else . . .goto pl}
end

procedure KillAllQ;
x1 := 0 ; . . . ; xn := 0 ; p := 0 ; y1 := 0 ; . . . ; ym := 0
end

Fig. 4.3. Definition of Q0 and Q �=0.

The main procedure of πM reads as follows:

procedure Main ;
x1 := 1 ; Init ;
(P0 ‖ Q0) ;
(xn := 0 � skip) ;write(xn)
end

procedure Init ;
x2 := 0 ; . . . ; xn := 0 ;
y1 := 0 ; . . . ; ym := 0
end

The threads P0 and Q0 are constructed such that M terminates if and only
if xn is not a constant at the write instruction. Note that this implies Theo-
rem 4.3.1.

The initialization x1 := 1 is the only occurrence of the constant 1 in the
program; all other variables are initialized by 0. Moreover, all other assign-
ment statements only copy values or re-initialize variables by 0. Thus, xn can
hold only the values 0 or 1 at the write statement. Clearly, xn may hold 0 due
to the statement (xn := 0 � skip) immediately before the write statement.
Thus xn can only be a constant of value 0, and, obviously, this is the case
if and only if xn cannot hold value 1 at the write instruction. Thus, we can
reformulate the goal of the construction as follows:

M terminates if and only if xn may hold 1 at the write statement.
(4.1)

The initialization of all variables except x1 by 0 reflects that p1 is the initial
state. For each of the two counters the program uses two procedures, P0
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and P�=0 for counter c0 and Q0 and Q �=0 for counter c1. They are defined in
Fig. 4.2 and 4.3. We describe P0 and P�=0 in detail in the following, Q0 and
Q �=0 are completely analogous.

Intuitively, P0 and P�=0 mirror transitions of M induced by counter c0

being =0 and �=0, respectively, hence their name. Each procedure non-
deterministically guesses the next transition. Such a transition involves two
things: firstly, a state change and, secondly, an effect on the counter value.
The state change from some pk to some ql is represented by copying xk to yl

via an auxiliary variable p and re-initializing xk by zero as part of KillAllP .
The effect on the counter value is represented by how we proceed:

– For transitions that do not change the counter we jump back to the begin-
ning of the procedure such that other transitions with the same counter
value can be simulated subsequently. This applies to skip-transitions and
test-decrement transitions for a zero counter, i.e. test-decrement transitions
simulated in P0.

– For incrementing transitions we call another instance of P�=0 that simulates
the transitions induced by the incremented counter. A return from this
new instance of P�=0 means that the counter is decremented, i.e. has the
old value. We therefore jump back to the beginning of the procedure after
the return from P�=0.

– For test-decrement transitions simulated in P�=0, we leave the current pro-
cedure.

This behavior is described in a structured way by means of loops and se-
quential and non-deterministic composition and is consistent with the rep-
resentation of the counter value by the number of instances of P�=0 on the
stack.

The problem with achieving (4.1) is that an execution may try to ‘cheat’: it
may execute the code representing a transition from pi to qj although xi does
not hold the value 1. If this is a decrementing or incrementing transition the
coincidence between counter values and stack heights may then be destroyed
and the value 1 may subsequently be propagated erroneously. Cheating may
thus invalidate the ‘if’ direction.

This problem is solved as follows. We ensure by appropriate re-initializa-
tion that all variables are set to 0 in any cheating executions. Thus, cheat-
ing executions cannot contribute to the propagation of the value 1. But re-
initializing a set of variables safely is not trivial in a concurrent environment.
We have only atomic assignments to single variables available; a variable just
set to 0 may well be set to another value by instructions executed by instances
of the procedures Q0 and Q �=0 running in parallel while we are initializing
the other variables. Here our assumption that moves involving the counters
alternate comes into play. Due to this assumption all copying assignments
in Q0 and Q �=0 are of the form q := yi or xj := q (q is the analog of the
auxiliary variable p). Thus, we can safely assign 0 to the yi in P0 and P�=0 as
they are not the target of a copy instruction in Q0 or Q �=0. After this, we can
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safely assign 0 to q; a copy instruction q := yi executed by the parallel thread
cannot destroy the value 0 as all yi contain 0 already. After that we can
safely assign 0 to the xi by a similar argument. This explains the definition
of KillAllP .

4.3.3 Correctness of the Reduction

From the intuition underlying the definition of πM , the ‘only if’ direction of
(4.1) is rather obvious: If M terminates, i.e., if it has transitions leading from
〈p1, 0, 0〉 to 〈pn, 0, 0〉, we can simulate these transitions by a propagating run
of πM . By explaining the definition of KillAllP , we justified the ‘if’ direction as
well. A formal proof can be given along the lines of the classic Owicki/Gries
method for proving partial correctness of parallel programs [71, 21, 3]. Al-
though this method is usually presented for programs without procedures
it is sound also for procedural programs. In the Owicki/Gries method, pro-
grams are annotated with assertions that represent properties valid for any
execution reaching the program point at which the assertion is written down.
This annotation is subject to certain rules that guarantee soundness of the
method.

Specifically, we prove that just before the write instruction in πM the
following assertion is valid:

xn = 1 ⇒ 〈p1, 0, 0〉 →∗ 〈pn, 0, 0〉 .
Validity of this assertion implies the ‘if’ direction of (4.1). The details of
this proof are deferred to Section 4.8 in order to increase readability of this
chapter.

Our proof should be compared to undecidability of reachability in pres-
ence of synchronization as proved by Ramalingam [77], and undecidability of
LTL model-checking for parallel languages (even without synchronization) as
proved by Bouajjani and Habermehl [6]. Both proofs employ two sequential
threads running in parallel. Ramalingam uses the two recursion stacks of the
threads to simulate context-free grammar derivations of two words whose
equality is enforced by the synchronization facilities of the programming lan-
guage. Bouajjani and Habermehl use the two recursion stacks to simulate two
counters (as we do) whose joint operation then is synchronized through the
LTL formula. Thus, both proofs rely on some kind of “external synchroniza-
tion” of the two threads – which is not available in our scenario. Instead, our
undecidability proof works with “internal synchronization” which is provided
implicitly by killing the circulating value 1 as soon as one thread deviates from
the intended synchronous behavior.

4.4 Intraprocedural Copy-Constant Detection

The undecidability result just presented means that we cannot expect to
detect all copy constants in parallel programs. Therefore, we must lower our
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expectation. In dataflow analysis one often investigates also intraprocedural
problems. These can be viewed as problems for programs without procedure
calls. Here, we find:

Theorem 4.4.1. Copy-constant detection is PSPACE-complete for parallel
programs intraprocedurally.

We can construct a non-deterministic algorithm that determines non-
constancy by guessing two runs witnessing different values for the variable in
question at the program point of interest. This algorithm can be implemented
in polynomial space: In a fork/join parallel program without procedures, the
number of threads potentially running in parallel is bounded by the size of the
program. Therefore, every run of the program can be simulated by a Turing
machine using just a polynomial amount of space. Moreover, as no arithmetic
is involved, only values present in the program have to be represented during
the computation of the runs. We conclude that the intraprocedural copy-
constant detection problem is in NPSPACE=PSPACE.

It remains to show that PSPACE is also a lower bound on the complexity
of copy-constant detection, i.e. PSPACE-hardness. This is done by a reduc-
tion from the Regular Expression Intersection problem. This problem
is chosen in favor of the better known intersection problem for finite automata
as we are heading for structured programs and not for flow graphs.

An instance of Regular Expression Intersection is given by a se-
quence r1, . . . , rn of regular expressions over some finite alphabet A. The
problem is to decide whether L(r1) ∩ . . . ∩ L(rn) is non-empty.

Proposition 4.4.1. The Regular Expression Intersection problem is
PSPACE-complete. ��

PSPACE-hardness of the Regular Expression Intersection prob-
lem follows by a reduction from the acceptance problem for linear space
bounded Turing machines along the lines of the corresponding proof for fi-
nite automata [45]. The problem remains PSPACE-complete if we consider
expressions without ∅.

Suppose now that A = {a1, . . . , ak}, and we are given n regular expres-
sions r1, . . . , rn. In our reduction we construct a parallel program that starts
n + 1 threads π0, . . . , πn after some initialization of the variables used in the
program:

procedure Main ;
KillXY0 ; . . . ; KillXYn ;xn,a1 := 1 ;
[π0 ‖ π1 ‖ · · · ‖ πn] ;
(x0,a1 := 0 � skip) ;write(x0,a1)
end

The threads refer to variables xi,a and yi (i ∈ {0, . . . , n}, a ∈ A). Thread π0

is defined as follows.



64 4. Limits of Parallel Flow Analysis

π0 = loop
�{y0 := xn,a ; KillAll0 ; x0,b := y0 | a, b ∈ A}

end

The statement KillAll0 that is defined below ensures that all variables except
y0 are re-initialized by 0 irrespective of the behavior of the other threads as
shown below.

For i = 1, . . . , n, the thread πi is induced by the regular expression ri. It
is given by πi = πi(ri), where πi(r) is defined by induction on r as follows.

πi(ε) = skip
πi(a) = yi := xi−1,a ; KillAlli ; xi,a := yi

πi(r1 · r2) = πi(r1) ; πi(r2)
πi(r1 + r2) = πi(r1) � πi(r2)

πi(r∗) = loop πi(r) end

The statement KillAlli re-initializes all variables except yi. This statement as
well as statements KillXj and KillXYj on which its definition is based, are
defined as follows.

KillXj = xj,a1 := 0; . . . ; xj,ak
:= 0

KillXYj = yj := 0; KillXj

KillAlli = KillXi; KillXYi+1; . . . ; KillXYn;
KillXY0; . . . ; KillXYi−1

Again it is not obvious that thread πi can safely re-initialize the variables
because the other threads may arbitrarily interleave. But by exploiting that
only copy instructions of the form yj := xj−1,a and xj,a := yj with j �= i
are present in the other threads this can be done by performing the re-
initializations in the order specified above.2 Two crucial properties are ex-
ploited for this. First, whenever a := b is a copying assignments in a parallel
thread, variable b is re-initialized before a. Therefore, execution of a := b
after the re-initialization of b just copies the value 0 from b to a but cannot
destroy the re-initialization of a. Secondly, in all constant assignments a := k
in parallel threads k equals 0 such that no other values can be generated.

Altogether, the threads are constructed in such a way that the following
is valid.

L(r1) ∩ . . . ∩ L(rn) �= ∅ if and only if
x0,a1 is not a constant (of value 0) at the write statement. (4.2)

Again, the latter is the case if and only if there is a run that propagates the
value 1 by which xn,a1 is initialized to the write-instruction. In the following,
2 Here and in the following, addition and subtraction in subscripts of variables and

processes is understood modulo n + 1.
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we describe the intuition underlying the construction and at the same time
prove (4.2).

The threads can be considered to form a ring of processes in which process
πi has processes πi−1 as left neighbor and πi+1 as right neighbor. Each thread
πi (i = 1, . . . , n) guesses a word in L(ri); thread π0 guesses some word in A∗.
The special form of the threads ensures that they can propagate the initial-
ization value 1 for xn,a1 if and only if all of them agree on the guessed word
and interleave the corresponding runs in a disciplined fashion. Obviously, the
latter is possible iff L(r1) ∩ . . . ∩ L(rn) �= ∅.

Let w = c1 · . . . ·cl be a word in L(r1)∩ . . .∩L(rn) and let c0 = a1, the first
letter in alphabet A. In the run induced by w that successfully propagates
the value 1, the threads circulate the value 1 around the ring of processes in
the variables xi,ci for each letter ci of w. We call this the propagation game
in the following. At the beginning of the j-th round, j = 1, . . . , l, process
π0 ‘proposes’ the letter cj by copying the value 1 from the variable xn,cj−1

to x0,cj in which it was left by the previous round or by the initialization,
respectively. For technical reasons this copying is done via the ‘local’ variable3

y0. Afterwards the processes πi (i = 1, . . . , n) successively copy the value from
xi−1,cj to xi,cj via their ‘local’ variables yi. From xn,cj it is copied by π0 in
the next round to x0,cj+1 and so on. After the last round (j = l) π0 finally
copies the value 1 from xn,cl

to x0,a1 and all processes terminate. Writing—
by a little abuse of notation—πi(a) for the single run of πi(a) and π0(a, b)
for the single run of y0 := xn,a ; KillAll0 ; x0,b := y0, we can summarize above
discussion by saying that

π0(a1, c1) · π1(c1) · . . . · πn(c1)·
π0(c1, c2) · π1(c2) · . . . · πn(c2)·

...
π0(cl−1, cl) · π1(cl) · . . . · πn(cl)·
π0(cl, a1)

is a run of π0 ‖ . . . ‖ πn that witnesses that x0,a1 may hold the value 1 finally,
and is thus not a constant at the write statement. This implies the ’only if’
direction of (4.2).

Next we show that the construction of the threads ensures that runs not
following the propagation game cannot propagate the value 1 to the write
instruction. In particular, if L(r1) ∩ . . . ∩ L(rn) = ∅, no propagating run
exists, which implies the ‘if’ direction of (4.2).

Note first that all runs of πi are composed of pieces of the form πi(a) and
all runs of π0 of pieces of the form π0(a, b) which is easily shown by induction.
A run can now deviate from the propagation game in two ways. First, it can
follow the rules but terminate in the middle of a round:

3 Variable yi is not local to πi in a strict sense. But the other threads do not use
it as target or source of a copying assignment; they only re-initialize it.
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π0(a1, c1) · π1(c1) · . . . · πi(c1) · . . . · πn(c1)·
π0(c1, c2) · π1(c2) · . . . · πi(c2) · . . . · πn(c2)·

...
π0(cm−1, cm) · π1(cm) · . . . · πi(cm)

Such a run does not propagate the value 1 to the write instruction as KillAlli
in πi(cm) re-initializes x0,a1 .

Secondly, a run might cease following the rules of the propagation game
after some initial (possibly empty) part. Consider then the first code piece
πi(a) or π0(a, b) that is started in ignorance of the propagation game rules.
It is not hard to see that the first statement in this code piece, yi := xi−1,a

or y0 := xn,a, respectively, then sets the local variable yi or y0 to zero. The
reason is that the propagation game ensures that variable xi−1,a or xn,a

holds 0 unless the next statement to be executed according to the rules of
the propagation game comes from πi(a) or some π0(a, b), respectively. The
subsequent statement KillAlli or KillAll0 then irrevocably re-initializes all the
other variables irrespective of the behavior of the other threads as we have
shown above. Thus, such a run also cannot propagate the value 1 to the write
instruction.

An Owicki/Gries style proof that confirms the crucial ‘if’ direction of (4.2)
can be found in Section 4.9.

4.5 Copy-Constant Detection in Loop-Free Programs

We may lower our expectation even more, and ban not only procedures but
also loops from the programs. But even then, copy-constant detection remains
intractable, unless P=NP.

Theorem 4.5.1. The parallel intraprocedural copy-constant detection prob-
lem in loop-free programs is co-NP-complete.

That the problem is in co-NP is easy to see. If a variable x is not a
constant at a certain program point p, we can guess two runs of the program
that witness different values for x at p. Each of these runs can involve each
statement in the program at most once as the program is loop-free. Hence its
length is linear in the size of the given program. As no arithmetic is involved in
copy-constant detection, only values present in the input program have to be
represented such that the time necessary for guessing the runs is polynomial
in the size of the input program.

Co-NP-hardness can be proved by specializing the construction from Sec-
tion 4.4 to star-free regular expressions. The intersection problem for such
expressions is NP-complete.

An alternative reduction from the well-known SAT problem is presented
in Chapter 9. In contrast to the construction of the current chapter, the
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reduction there relies only on propagation along copying assignments but
not on “quasi-synchronization” through well-directed re-initialization of va-
riables. However, this technique does not seem to generalize to the general
intraprocedural and the interprocedural case.

4.6 Beyond Fork/Join Parallelism

A weak form of synchronization is inherent in the fork/join parallelism as-
sumed in this chapter, as start and termination of threads is synchronized.
The hardness results of this chapter, however, are not restricted to such
settings but can also be shown without assuming synchronous start and ter-
mination. Therefore, they also apply to languages like JAVA.

The PSPACE-hardness proof in Section 4.4, for instance, can be modified
as follows. Let c, d be two new distinct letters and B = A ∪ {c, d}. Now πi is
defined as πi(c · ri · d) and the initialization and the final write instruction is
moved to thread π0. More specifically, π0 is redefined as follows:

π0 = KillAll0 ; x0,c := 1 ;
loop
�{y0 := xn,a ;KillAll0 ; x0,b := y0 | a, b ∈ B}

end ;
(xn,d := 0 � skip) ;write(xn,d)

(Of course the statements KillXi have to re-initialize also the new variables
xi,c and xi,d.) Essentially this modification amounts to requiring that the
propagation game is played with a first round for letter c—this ensures a
quasi-synchronous start of the threads—and a final round for letter d—this
ensures a quasi-synchronous termination. Thus,

L(r1) ∩ . . . ∩ L(rn) �= ∅ if and only if
xn,d is not a constant (of value 0) at the write statement.

Similar modifications work for the reductions in Section 4.3 and 4.5.

4.7 Owicki/Gries-Style Program Proofs

Reasoning about parallel programs is known as a notoriously error-prone
activity. The actions of different threads can interleave in many different
ways and far too easily certain interleavings are overlooked that invalidate
an informal argument for subtle reasons. In order to safeguard against error
in our reasoning, we perform formal program proofs in the style of Owicki
and Gries’ classic method [71, 21, 3] that confirm the critical parts of the
reasoning in the reductions. In the remainder of this section we briefly recall



68 4. Limits of Parallel Flow Analysis

the Owicki/Gries method and in the following two sections we present the
proofs for the critical directions in the undecidability proof of Section 4.3
and the PSPACE-hardness proof of Section 4.4. These sections may safely be
skipped on first reading.

The Owicki/Gries method relies on proof outlines which are programs
annotated with assertions. Assertions are formulas that represent properties
valid for any execution that reaches the program point where the assertion
is written down. As usual we write assertions in braces. The annotation is
subject to the rules well-known from sequential program proofs. For example
if an assignment statement x := e is preceded by an assertion {φ} and followed
by an assertion {ψ}, then φ must imply ψ[e/x], where ψ[e/x] denotes the
assertion obtained by substituting e for x in ψ. We assume that the reader
is familiar with this style of program proofs (for details see e.g. [71, 21, 3]).

The rule for parallel programs looks as follows [3, Rule 19]:

The standard proof outlines {pi}S∗
i {qi},

i ∈ {1, . . . , n}, are interference free
{∧n

i=1 pi}[S1 ‖ . . . ‖ Sn]{∧n
i=1 qi}

In this rule S∗
i stands for an annotated version of parallel component Si

and the requirement that the proof outlines for the component programs are
‘standard’ means in our context that every atomic statement is surrounded
by assertions.

The crucial additional premise for parallel programs is interference free-
dom. The following must be true in an interference-free proof outline for a
parallel program: Suppose {φ} is an assertion in one parallel component and
S is an atomic statement in another parallel component that is preceded by
the assertion pre(S). Then {φ∧pre(S)}S{φ} must be valid in the usual sense
of partial correctness. Intuitively, inference freedom guarantees that validity
of an assertion is not destroyed by instructions of threads running in parallel.

4.8 Correctness of the Reduction in Section 4.3

Let us now formally prove the ‘if’ direction of (4.1). We assume all notations
and definitions of Section 4.3. As mentioned, we prove that just before the
write instruction in πM the following assertion is valid in the sense of partial
correctness, i.e., that any execution reaching this program point satisfies the
property:

xn = 1 ⇒ 〈p0, 0, 0〉 →∗ 〈pn, 0, 0〉 . (4.3)

Validity of this assertion corresponds directly to the ‘if’ direction of (4.1).

4.8.1 Enriching the Program

Before we discuss proof outlines, we enrich the program πM by two variables
c0 and c1 that reflect the values of the counters. Initialization statements



4.8 Correctness of the Reduction in Section 4.3 69

c0 := 0 and c1 := 0 are added to the Init procedure. Furthermore, c0 and
c1 are incremented and decremented at appropriate places in P0, P�=0, Q0,
and Q �=0. (For the purpose of performing the proof we allow more general
expressions in assignment statements.) Specifically, the code pieces of the
form

p := xk ;KillAllP ; yl := p ;P�=0

that represent incrementing transitions in P0 and P�=0 are replaced by

p := xk ; KillAllP ; c0 := c0 + 1 ; yl := p ;P�=0

and the code pieces after the loop in P�=0 that represent decrementing tran-
sitions are replaced by

p := xk ; KillAllP ; c0 := c0 − 1 ; yl := p .

Analogous modifications are made in Q0 and Q �=0 for counter c1. It is ob-
vious that Assertion (4.3) holds in the modified program if and only if it
holds in the original program as c0 and c1 are only used in assignments to
themselves. (c0 and c1 are auxiliary variables in the formal sense of the term
used in connection with the Owicki/Gries method. It is well-known that the
Owicki/Gries method is incomplete without auxiliary variables [21].)

4.8.2 The Proof Outlines

The assertions in the proof ensure that certain configurations are reachable
in M if a certain variable in πM holds value 1. We introduce an abbreviation
for the formula expressing this fact:

OK(x, s, c0, c1) :⇔ x = 1 ⇒ 〈p1, 0, 0〉 →∗ 〈s, c0, c1〉
Here x is a variable of the constructed program, s is a state of the two-
counter machine and c0, c1 are expressions involving the auxiliary variables
from above. Note that Assertion (4.3) is simply OK(xn, pn, 0, 0).

The proof outline for the body of procedure Main looks as follows. For
clarity, we use a comma to denote conjunction in assertions.

[ 1 ] {true}
[ 2 ] x1 := 1 ;
[ 3 ] {x1 = 1}
[ 4 ] Init
[ 5 ] {x1 = 1, c0 = 0, c1 = 0,

∧n
i=2 xi = 0,

∧m
i=1 yi = 0}

[ 6 ] {c0 = 0, c1 = 0,
∧n

i=1 OK(xi, pi, c0, c1),
∧m

i=1 OK(yi, qi, c0, c1)}
[ 7 ] (P0 ‖ Q0) ;
[ 8 ] {c0 = 0, c1 = 0,

∧n
i=1 OK(xi, pi, c0, c1),

∧m
i=1 OK(yi, qi, c0, c1)}

[ 9 ] (xn := 0 � skip) ;
[10] {OK(xn, pn, 0, 0)}
[11] write(xn)
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The obvious proof outline for Init is omitted. It is easy to see that line [5]
implies the assertion in line [6] as OK(x, s, 0, 0) trivially holds if x holds 0 or if
s is p1. Also statement [9] is partially correct with respect to the surrounding
assertions: xn := 0 establishes Assertion [10] for trivial reasons; and validity
for skip follows from the fact that the Assertion [8] implies the Assertion [10]
which is obvious.

It remains to show that the statement in line [7], P0 ‖ Q0, is partially cor-
rect with respect to the surrounding assertions. For this purpose we show—by
interference free proof outlines—that P0 and Q0 satisfy the following specifi-
cations and apply the parallel rule of the Owicki/Gries method:

{c0 = 0,
∧n

i=1 OK(xi, pi, c0, c1)}
P0

{c0 = 0,
∧n

i=1 OK(xi, pi, c0, c1)}

{c1 = 0,
∧m

i=1 OK(yi, qi, c0, c1)}
Q0

{c1 = 0,
∧m

i=1 OK(yi, pi, c0, c1)}
Simultaneously, we prove similar specifications for P�=0 and Q �=0 that are
parameterized by a constant k > 0:

{c0 = k,
∧n

i=1 OK(xi, pi, c0, c1)}
P�=0

{c0 = k − 1,
∧n

i=1 OK(xi, pi, c0, c1)}

{c1 = k,
∧m

i=1 OK(yi, qi, c0, c1)}
Q �=0

{c1 = k − 1,
∧m

i=1 OK(yi, qi, c0, c1)}
As we are concerned with partial correctness, it suffices to show that the
body of the procedures satisfy these specification, under the assumption that
recursive calls do.

In the following we present the proof outlines for P0 and P�=0 in detail;
the proofs for Q0 and Q �=0 are completely analogous. Afterwards we show
interference freedom, a proof that reflects crucial properties of our construc-
tion.

The first goal is to show that the precondition of each procedure is an
invariant of the loop in the body of that procedure. This amounts to proving
that each path through the loop preserves the precondition. Let k = 0 for
the proof in P0 and k > 0 for the proof in P�=0.

This is the proof for the paths induced by skip-transitions in both proce-
dures or test-decrement transitions in P0 :

[11] {c0 = k,
∧n

i=1 OK(xi, pi, c0, c1)}
[12] p := xk ;
[13] {c0 = k, OK(p, pk, c0, c1)}
[14] KillAllP
[15] {c0 = k, OK(p, pk, c0, c1),

∧m
i=1 yi = 0, q = 0,

∧n
i=1 xi = 0}

[16] yl := p

[17] {c0 = k,
∧n

i=1 OK(xi, pi, c0, c1)}
Instruction [16] leaves all variables xi untouched. Hence, it establishes its
postcondition [17], because all xi are ensured to be zero in [15] and, if xi =
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0, OK(xi, pi, c0, c1) holds trivially. It may be surprising that the conjunct
OK(p, pk, c0, c1) is not needed in this proof because, intuitively, it captures a
crucial property of the construction. The reason is that the proofs of P0 and
P�=0 establish only a property about the xi. The conjunct OK(p, pk, c0, c1)
is, however, important to ensure interference freedom of [16] with the proof
outlines for Q0 and Q �=0 that concern the variables yi.

The specification of KillAllP , viz. {[13]}KillAllP {[15]}, is again parameter-
ized by a constant k ≥ 0 and is also used in the proof outlines that follow. It is
straightforward to construct a proof outline witnessing this specification: the
variables that have already been re-initialized are collected in an increasingly
larger conjunction.

The proof outline for the paths through the loop bodies induced by incre-
menting transitions is similar but has to reflect the change of the counter. It
also applies the assumption about recursive calls of P�=0 (for knew = k + 1):

[18] {c0 = k,
∧n

i=1 OK(xi, pi, c0, c1)}
[19] p := xk ;
[20] {c0 = k, OK(p, pk, c0, c1)}
[21] KillAllP
[22] {c0 = k, OK(p, pk, c0, c1),

∧m
i=1 yi = 0, q = 0,

∧n
i=1 xi = 0}

[23] c0 := c0 + 1
[24] {c0 = k + 1, OK(p, pk, c0 − 1, c1),

∧m
i=1 yi = 0, q = 0,

∧n
i=1 xi = 0}

[25] yl := p

[26] {c0 = k + 1,
∧n

i=1 OK(xi, pi, c0, c1)}
[27] P�=0

[28] {c0 = k,
∧n

i=1 OK(xi, pi, c0, c1)}

This completes the proof that the preconditions of P0 and P�=0 are loop invari-
ants and also finishes the proof outline for P0, as its pre- and postcondition
coincide and its body just consists of the loop.

It remains to show that the paths from the loop exit to the procedure exit
in P�=0 induced by decrementing transitions establish the postcondition from
the loop invariant, i.e. the precondition of P�=0:

[29] {c0 = k,
∧n

i=1 OK(xi, pi, c0, c1)}
[30] p := xk ;
[31] {c0 = k, OK(p, pk, c0, c1)}
[32] KillAllP
[33] {c0 = k, OK(p, pk, c0, c1),

∧m
i=1 yi = 0, q = 0,

∧n
i=1 xi = 0}

[34] c0 := c0 − 1 ;
[35] {c0 = k − 1, OK(p, pk, c0 + 1, c1),

∧m
i=1 yi = 0, q = 0,

∧n
i=1 xi = 0}

[36] yl := p

[37] {c0 = k − 1,
∧n

i=1 OK(xi, pi, c0, c1)}
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4.8.3 Interference Freedom

Let us now check interference freedom. We look at each type of assignment
found in Q0 and Q �=0. It is clear that an assignment to a variable z cannot
invalidate conjuncts in assertions that do not mention z. Therefore, we only
need to consider conjuncts in assertions mentioning the variable to which the
statement in question assigns.

– xi := 0, yi := 0, p := 0: these re-initializing assignment statements cannot
invalidate any assertion in the proof outlines because all conjuncts that
mention the left-hand-side variable trivially hold if the variable is zero.
This holds in particular for conjuncts of the form OK(x, s, c0, c1).

– c1 := c1 + 1 and c1 := c1 − 1: all conjuncts of the form OK(p, pk, c0, c1)
or OK(xi, pi, c0, c1) could potentially be invalidated by these statements.
All incrementations and decrementations of c1 are however—in analogy to
[22] and [33]—guarded by a precondition that ensures that p as well as
all variables xi hold zero, which make OK(p, pk, c0, c1) or OK(xi, pi, c0, c1)
true for trivial reasons.
Note that this argument exploits that the variables are re-initialized in
order to avoid ‘cheating’.

– q := yk: such a statement could potentially invalidate a conjunct of the
form q = 0. However, the conjunct q = 0 appears in assertions only together
with the conjunct

∧m
i=1 yi = 0. In particular this holds in the (omitted)

proof outline for KillAllp because the variables yi are re-initialized before
q. Therefore, q := yk cannot destroy validity of the assertion.
Note that it is essential for this argument that the re-initializations in
KillAllP are done in the correct order as discussed in Section 4.3.2.

– xl := q: such a statement could potentially invalidate conjuncts of the form
xl = 0 or OK(xl, pl, c0, c1).
All assertions that contain xl = 0 also contain a conjunct q = 0. Thus, we
can argue as for instructions of the form q := yk.
For conjuncts of the form OK(xl, pl, c0, c1) the argument is more subtle.
Similarly to [15], [24], and [35], xl := q is preceded by an assertion that
ensures in particular that OK(q, qk, c0, c1 + ι) holds, where ι ∈ {−1, 0, 1}.
By the construction of πM , ι = −1, 1, or 0 iff there is a transition from qk

to pl that increments, decrements, or leaves the counter c1 unchanged,
respectively. Now suppose that xl is assigned the value 1 by xl := q,
otherwise OK(xl, pl, c0, c1) holds trivially. Then clearly q = 1 which im-
plies 〈p1, 0, 0〉 →∗ 〈qk, c0, c1 + x〉 by OK(q, qk, c0, c1 + x). By the transition
from qk to pl, this transition sequence can now be extended to a sequence
〈p1, 0, 0〉 →∗ 〈pl, c0, c1〉. Hence, OK(xl, pl, c0, c1) holds.

It is interesting to observe that the crucial properties of the construction are
reflected in the interference freedom proof rather than the local proofs. Note,
however, that the interference freedom proof exploits the preconditions of the
interleaving statements that are established by the local proofs.



4.9 Correctness of the Reduction in Section 4.4 73

4.9 Correctness of the Reduction in Section 4.4

In this section we provide a formal proof of the ‘if’ direction of (4.2). As in
Section 4.8 we present an Owicki/Gries-style program proof. Specifically, we
show that the assertion

x0,a1 = 1 ⇒ L(r1) ∩ . . . ∩ L(rn) �= ∅ (4.4)

is valid in the sense of partial correctness just before the write instruction in
Main . This suffices to establish the ‘if’ direction of (4.2) because x0,a1 can
hold only the values 0 and 1.

4.9.1 Enriching the Program

In order to perform the proof of (4.4), the threads are enriched by auxiliary
variables wi, i = 0, . . . , n, that take values in A∗ and record the words guessed
by the threads πi. For this purpose the definition of π0 and πi(a) is modified
as follows:

π0 = loop

�{y0 := xn,a ; KillAll0 ;
w0 := w0 · b ; x0,b := y0 | a, b ∈ A}

end

πi(a) = yi := xi−1,a ; KillAlli ; wi := wi · a ;xi,a := yi .

The other clauses for πi are left unchanged. The auxiliary variables wi are
initialized with the empty word ε in the Main procedure:

procedure Main ;
KillXY0 ; . . . ; KillXYn ;xn,a1 := 1 ;
w0 := ε ; . . . ; wn := ε ;
[π0 ‖ π1 ‖ · · · ‖ πn] ;
(x0,a1 := 0 � skip) ;
write(x0,a1)
end

Obviously, adding the variables wi does not affect validity of Assertion (4.4).

4.9.2 An Auxiliary Predicate

A crucial property of the constructed program is the following: the fact that
a certain variable holds the value 1 at a certain point in the program means
that the propagation game has been played correctly up to this point in the
execution and is in a certain stage. In the formal proof we try to capture the
essence of this by an assertion on the words wi guessed by the parallel threads
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so far. To allow a concise statement of the corresponding assertions in the
proof of thread πi, we introduce a predicate OK(x, i, c) as an abbreviation,
where x is a variable, i ∈ {1, . . . , n + 1} is a thread number (n + 1 stands for
thread π0) and c ∈ A is a letter.

Intuitively, OK(x, i, c) expresses the following: if variable x holds value 1
then all threads j < i have guessed the same word—as a reference we use
word w0—and all threads j ≥ i have guessed the word obtained from w0 by
removing the last letter; moreover, c is this last letter. Formally, we define:

OK(x, i, c) :⇔ x = 1 ⇒ (
∧

0≤j<i w0 = wj ∧
∧

i≤j<n+1 w0 = wj · c) .

Note that the OK-predicate refers to all the variables wi but does not list
them explicitly in the argument list.

In the following we discuss first the specification of thread π0 and then a
generic specification for the threads πi, i = 1, . . . , n, and give corresponding
proof outlines. Afterwards we present the proof outline for the Main proce-
dure and discuss interference freedom. Only validity of non-trivial local proof
obligations is discussed in detail.

4.9.3 Proof Outline for π0

The specification for π0 reads as follows:

{∧c∈A OK(xn,c, n + 1, c)} π0 {∧c∈A OK(xn,c, n + 1, c)}

Note that pre- and postcondition coincide. The specification is shown to
be valid by proving that the precondition is an invariant of the loop that
constitutes π0:

[1] {∧c∈A OK(xn,c, n + 1, c)}
[2] y0 := xn,a ;
[3] {OK(y0, n + 1, a)}
[4] KillAll0 ;
[5] {OK(y0, n + 1, a),

∧n
j=0

∧
c∈A xj,c = 0,

∧n
j=1 yj = 0}

[6] w0 := w0 · b ;
[7] {OK(y0, 0, b),

∧n
j=0

∧
c∈A xj,c = 0,

∧n
j=1 yj = 0}

[8] x0,b := y0

[9] {∧c∈A OK(xn,c, n + 1, c)}

In the step from Assertion [5] to [7], only the OK-predicates are of interest.
To see the validity of this step note that OK(y0, n + 1, a) simplifies to

y0 = 1 ⇒ ∧
0≤j<n+1 w0 = wj
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and OK(y0, 0, b) to

y0 = 1 ⇒ ∧
0≤j<n+1 w0 = wj · b .

The step from Assertion [7] to [9] exploits that OK(x, i, c) holds trivially
if x = 0. Interestingly, the conjunct OK(y0, 0, b) is not needed for proving
the postcondition [9]. But it is crucial for showing interference freedom of
x0,b := y0 with the assertion OK(x0,b, 1, b) that occurs in the proof outline
for π1. To be complete, we should also state a proof outline for KillAll0. But
this proof outline is straightforward: we simply collect the variables that have
already been set to 0 in an increasingly larger conjunction.

4.9.4 Proof Outline for πi(r)

The specification of thread πi, for i = 0, . . . , n, reads as follows.

{wi = ε,
∧

c∈A OK(xi−1,c, i, c)}
πi

{wi ∈ L(r),
∧

c∈A OK(xi−1,c, i, c)}
(4.5)

Thread πi = πi(ri) is defined by induction on the structure of the regu-
lar expression ri. In order to show validity of (4.5) we show a generalized
specification for πi(r) also by induction on r:

{wi ∈ L,
∧

c∈A OK(xi−1,c, i, c)}
πi(r)

{wi ∈ L · L(r),
∧

c∈A OK(xi−1,c, i, c)}

for any language L ⊆ A∗ and regular expression r. Specification (4.5) then
follows by instantiating L by {ε} and r by ri.

Now we discuss the proof outlines in the structural induction on r. The
proof outline for πi(a) is similar to the one of π0. We therefore omit a detailed
justification of the local steps.

[10] {wi ∈ L,
∧

c∈A OK(xi−1,c, i, c)}
[11] yi := xi−1,a ;
[12] {wi ∈ L, OK(yi, i, a)}
[13] KillAlli ;
[14] {wi ∈ L, OK(yi, i, a),

∧n
j=0

∧
c∈A xj,c = 0,

∧
j �=i yj = 0}

[15] wi := wi · a ;
[16] {wi ∈ L · L(a), OK(yi, i + 1, a),

∧n
j=0

∧
c∈A xj,c = 0,

∧
j �=i yj = 0}

[17] xi,a := yi

[18] {wi ∈ L · L(a),
∧

c∈A OK(xi−1,c, i, c)}
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The proof for KillAlli is just as straightforward as the proof for KillAll0 men-
tioned above.

The proof outline for πi(r1 · r2) is very simple, given that we can apply
the induction hypothesis for πi(r1) and πi(r2):

[19] {wi ∈ L,
∧

c∈A OK(xi−1,c, i, c)}
[20] πi(r1)
[21] {wi ∈ L · L(r1),

∧
c∈A OK(xi−1,c, i, c)}

[22] πi(r2)
[23] {wi ∈ L · L(r1) · L(r2),

∧
c∈A OK(xi−1,c, i, c)}

[24] {wi ∈ L · L(r1 · r2),
∧

c∈A OK(xi−1,c, i, c)}

In the proof for πi(r1 + r2), we have to show that every component in
the non-deterministic choice comprising πi(r1 + r2) satisfies the specification.
Using the induction hypothesis this is again quite easy. Suppose l ∈ {1, 2}.
Then

[25] {wi ∈ L,
∧

c∈A OK(xi−1,c, i, c)}
[26] πi(rl)
[27] {wi ∈ L · L(rl),

∧
c∈A OK(xi−1,c, i, c)}

[28] {wi ∈ L · L(r1 + r2),
∧

c∈A OK(xi−1,c, i, c)}
Assertion [27] implies [28], as L(rl) ⊆ L(r1 + r2).

For πi(r∗) we have to show validity of

{wi ∈ L,
∧

c∈A OK(xi−1,c, i, c)}
loop πi(r) end

{wi ∈ L · L(r)∗,
∧

c∈A OK(xi−1,c, i, c)}

We prove that the postcondition is a loop invariant. First of all, it follows
from the precondition because ε ∈ L(r)∗. Secondly, it is preserved by the loop
body, which follows easily from the induction hypothesis and the inclusion
L(r)∗ · L(r) ⊆ L(r)∗:

[29] {wi ∈ L · L(r)∗,
∧

c∈A OK(xi−1,c, i, c)}
[30] πi(r)
[31] {wi ∈ L · L(r)∗ · L(r),

∧
c∈A OK(xi−1,c, i, c)}

[32] {wi ∈ L · L(r)∗,
∧

c∈A OK(xi−1,c, i, c)}

4.9.5 Proof Outline for Main

Now we are ready to give the proof for the Main procedure that relies on the
specifications for the πi proved above. Note that this proof yields that (4.4)
is indeed valid just before the write instruction.
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[33] {true}
[34] KillXY0 ; . . . ; KillXYn ; xn,a1 := 1 ;
[35] w0 := ε ; . . . ; wn := ε ;
[36] {xn,a1 = 1,

∧
(j,c) �=(n,a1)

xj,c = 0,
∧n

j=0 yj = 0,
∧n

j=0 wj = ε}
[37] [π0 ‖ π1 ‖ · · · ‖ πn] ;
[38] {OK(x0,a1 , 1, a1),

∧n
j=1 wj ∈ L(rj)}

[39] (x0,a1 := 0 � skip) ;
[40] {x0,a1 = 1 ⇒ L(r1) ∩ . . . ∩ L(rn) �= ∅}
[41] write(x0,a1)

It is obvious that Assertion [36] is established by the initialization. It is also
easy to see that [36] implies all the preconditions of the parallel threads: the
conjuncts wi = ε in the preconditions of the πi, i = 1, . . . , n, are also present
in [36]. All the other conjuncts found in the preconditions have the form
OK(xj−1,c, j, c) for some j = 1, . . . , n + 1 and c ∈ A. Of these, the predicate
OK(xn,a1 , n+1, a1), which is present in the precondition of π0, holds, because
all the variables wj are guaranteed by [36] to hold the same word ε; and all
the other OK(xj−1, j, c)-predicates are trivially valid as the corresponding
variable xj−1,c is guaranteed by [36] to hold the value 0.

All the conjuncts in Assertion [38] are found in the postconditions of
the parallel threads: OK(x0,a1 , 1, a1) is a conjunct in the postcondition of
π1 and, for j = 1, . . . , n, wj ∈ L(rj) is a conjunct in the postcondition of
πj . In the following section we show that the proof outlines for the threads
πi are interference-free. We can thus conclude by the parallel rule of the
Owicki/Gries method that the step from Assertion [36] to [38] is valid.

Let us now consider the step from Assertion [38] to [40]. First of all,
x0,a1 := 0 establishes Assertion [40] for trivial reasons. Correctness of this
step for skip holds, because Assertion [40] is implied by Assertion [38]: as a
consequence of OK(x0,a1 , 1, a1), x0,a1 = 1 implies w0 = wj ·a1 for j = 1, . . . , n
which in turn implies that all the variables w1, . . . , wn contain the same word.
By

∧n
j=1 wj ∈ L(rj), this word lies in L(r1)∩ . . .∩L(rn), which consequently

is non-empty.

4.9.6 Interference Freedom

We now check interference freedom of the local proof outlines for the threads
πi, i = 0, . . . , n. As in Section 4.8 we look at each type of assignment found in
one of the threads and check that it cannot invalidate conjuncts in assertions
in other threads that refer to the left hand side variable of that assignment.
Throughout this discussion, we suppose i, j ∈ {0, . . . , n} and use i as the sub-
script of the thread in which the assignment in question appears. Subscripts
of variables and threads are understood modulo n + 1.

– wi := wi · a in πi: none of the assertions in a thread different from πi

mentions the variable wi.
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– yi := xi−1,a in πi: in other threads πj , j �= i, variable yi is mentioned
only in conjuncts of the form yi = 0. However, these conjuncts always
appear together with a conjunct xi−1,a = 0, which ensures that yi := xi−1,a

does not destroy validity of the assertion. This in particular holds in the
omitted straightforward proofs for KillAll due to the order in which the
re-initializations are performed. The re-initialization order ensures that
variable xi−1,a is re-initialized before yi.

– xi,a := yi in πi: there are two different conjuncts in other threads in which
variable xi,a is mentioned. Firstly, it is mentioned in conjuncts of the form
xi,a = 0. These, however, appear only together with the assertion yi = 0.
We can thus argue similar to the case of assignment statements of the form
yi := xi−1,a.
Secondly, variable xi,a appears in conjuncts of the form OK(xi,a, i+1, a) in
assertions in πi+1. Here the precondition of xi,a := yi, viz OK(yi, i + 1, a),
ensures that OK(xi,a, i + 1, a) remains valid.

– yj := 0, or xj,c := 0 in KillAlli: the left hand side variable of these re-
initialization statements appears only in conjuncts of the form z = 0 or
OK(z, k, c). Both of them are made true by the re-initialization statement
for trivial reasons.

4.10 Conclusion

In this chapter we have studied the complexity of copy-constant detection
in parallel programs, in order to pinpoint limitations of synchronization-
independent program analysis. By means of a reduction from the halting
problem for two-counter machines, we have shown that the interprocedu-
ral problem is undecidable. If we consider programs without procedure calls
(intraprocedural problem) copy-constant detection becomes decidable but is
still intractable. More specifically, we have shown it to be PSPACE-hard by
means of a reduction from the intersection problem for regular expressions.
Finally, even if we restrict attention to parallel programs without loops, the
problem remains NP-hard. These lower bounds are tight because matching
upper bounds are easy to establish.

It is interesting to contrast the results of this chapter with the detection
problem for strong copy constants. Strong copy constants differ from (full)
copy constants in that only constant assignments are taken into account by
the analysis. In particular, each variable that is a strong copy constant at a
program point p is also a copy constant but not vice versa. The detection of
strong copy constants turns out to be a much simpler problem as it can be
solved in polynomial time [41, 85].

Previous complexity and undecidability results for dataflow problems for
concurrent languages [91, 77] exploit in an essential way synchronization
primitives of the considered languages. In contrast our results hold inde-
pendently of any synchronization. They only exploit interleaving of atomic
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statements and are thus applicable to a much wider class of concurrent lan-
guages. Our results rely, however, on the assumption that basic statements
execute atomically. We can show that this assumption is indeed crucial for the
undecidability result: in Chapter 8 we show that the interprocedural copy-
constants detection problem in parallel programs can indeed be solved (in
exponential time) if this assumption is abandoned.

The techniques used here can be used to obtain similar results also for
other optimal program analysis problems, in particular, the detection of truly
live variables and the computation of optimal slices. In fact, the reductions
have been presented for slicing originally [61]. True liveness of variables is
a refinement of the more well-known notion of live variables that gives rise
to a stronger form of dead code elimination known as faint-code elimination
[25]. Program slicing [94] is an established program-reduction technique that
has applications in program understanding, debugging, and testing [92]. It
has also been proposed as a technique for ameliorating the state-explosion
problem when formally verifying software or hardware [35, 29, 8, 53].



5. Parallel Flow Graphs

In Chapter 4 we have seen that copy-constant detection is undecidable for
parallel programs with procedures if we assume that assignments execute
atomically, a quite common idealization. However, in many execution sce-
narios for concurrent programs this assumption is hardly realistic (see Chap-
ter 6). Thus, it is interesting to investigate whether these results still hold
without the assumption of atomic execution.

Surprisingly, copy-constant detection becomes decidable, if assignments
execute non-atomically. Specifically, we develop an EXPTIME-algorithm for
this problem as well as for the elimination of faint code. The crucial new idea
is to abstract sets of runs to antichains of short dependence traces, an abstrac-
tion that turns out to be precise relative to a semantics capturing non-atomic
execution of assignments. Based on the information in these antichains that
can effectively be computed in exponential time, the two program analysis
problems mentioned above can be answered easily [59]. It is somewhat in-
volved to set up the technical framework for these results. Therefore, the
presentation which largely follows [59] is spread over a number of chapters.1

In the following we briefly outline the contents of these chapters.
In the current chapter we introduce a flow graph model for parallel pro-

grams (cf. [85, 44, 26]). Edges in the flow graph are annotated with a base
statement, a call of a single procedure, or a parallel call of two procedures. As
base statements we allow assignment statements and the do-nothing state-
ment skip. We assume that branching is non-deterministic, a common ab-
straction in flow analysis. We define a symbolic operational semantics for
parallel flow graphs that captures possible sequences of atomic actions. A
sequence of atomic actions is called a run. The symbolic operational seman-
tics is taken as a basis for defining a number of run sets of interest, reaching
runs, terminating runs, and bridging runs. We then develop constraint sys-
tems that characterize these run sets as the smallest solution of systems of
subset constraints. Setting up these constraint systems correctly is easier if
we assume atomic execution of base statements. Therefore, in this chapter
we still adopt this idealization.

1 Updated material from Reference [59], Theoretical Computer Science, Volume
311, Markus Müller-Olm, Precise interprocedural dependence analysis of parallel
programs, pp. 325–388, c© 2003, reprinted with permission from Elsevier.

M. Müller-Olm: Variations on Constants, LNCS 3800, pp. 81-99, 2006.
 Springer-Verlag Berlin Heidelberg 2006
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By redefining the operators used in the constraint systems appropriately,
we can capture non-atomic execution of base statements. In Chapter 6 we
discuss why non-atomic execution is a more realistic assumption and develop
a corresponding interpretation of the operators in the constraint systems.
This results in a reference semantics that can be used to measure the precision
of flow analyzers relative to non-atomic execution of base statements.

We can perform program analysis by solving the constraint systems over
an abstract lattice with finite chain height by fixpoint iteration (Appendix A).
In Chapter 7 we develop such a lattice, the most important component of
which is given by the antichains of dependence traces mentioned above. We
define abstract interpretations for the operators in the constraint systems on
this lattice and show that these abstract operations are precise abstractions
of the operations in the non-atomic execution semantics. By solving the con-
straint systems developed in the current chapter over this abstract lattice,
we can thus do exact interprocedural dependence analysis in parallel programs
relative to non-atomic execution. This in turn can be used for exact inter-
procedural copy-constant propagation and complete faint-code elimination
in parallel programs. Corresponding EXPTIME-algorithms are developed in
Chapter 8.

Although we have not yet been able to fully characterize the complex-
ity of these two problems in the non-atomic execution scenario, we have
made some progress into that direction (Chapter 9). We show that—as in
the atomic execution scenario—the loop-free intraprocedural problem is NP-
complete. While this implies that also the general intra- and interprocedural
problem are intractable it gives no upper bound for their complexity. As a
step into that direction we indicate that the general interprocedural problem
is unlikely to be in NP, by showing that there are dependences exhibited only
by exponentially long runs.

5.1 Parallel Flow Graphs

There are two reasons for using a flow graph model instead of syntactic
programs as in Chapter 4. First of all, it is technically more convenient. The
nodes of a flow graph directly correspond to program points. Thus, they
provide a natural entity to associate dataflow information with. In contrast,
in a syntactic program model there is no entity that directly corresponds
to a program point and some way to work around this deficiency has to
be found. Nielson, Nielson, and Hankin, for instance, require in their book
[70] that each basic statement and condition in a program is annotated with
a unique label. In the analyses covered in their book [70] these labels are
associated with dataflow information. Using unique labels identifying base-
statement instances as a substitute for program points is an elegant albeit
non-standard approach.
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The second reason for using a flow-graph model in this part of the mono-
graph is that such a model is slightly more general than a syntactic program
model. It also covers programs with unstructured control flow. This makes the
positive results shown in this part (decidability of various analysis problems)
slightly more general.

It is not hard to describe a translation of syntactic parallel programs
as used in Chapter 4 to parallel flow graphs. Because such a translation is
tedious to specify and does not give any new insight it is omitted from this
monograph.

Let X be a finite set of (global) program variables and Expr a set of ex-
pressions (or terms) over X . The precise nature of expressions is immaterial;
we only need that each variable x ∈ X is also an expression: X ⊆ Expr, and
that we can determine for an expression t ∈ Expr the set of variables occur-
ring in t, var(t) ⊆ X . Let Stmt := {x := t | x ∈ X, t ∈ Expr} ∪ {skip} be the
set of base statements. We use stmt to range over base statements.

Formally, a parallel flow graph comprises a finite set Proc of procedure
names that contains a distinguished procedure Main . Intuitively, Main is
the procedure with which execution starts. For simplicity, we assume that
all procedures work on the same set X of global program variables and do
not have local variables. Each procedure name p ∈ Proc is associated with a
control flow graph Gp = (Np, Ep, Ap, ep, rp) that consists of:

– a set Np of program points ;
– a set of edges Ep ⊆ Np ×Np;
– a mapping Ap : Ep → Stmt ∪ Proc ∪ Proc2 that annotates each edge with

a base statement, a call of a single procedure, or a parallel call of two
procedures; and

– a special entry (or start) point ep ∈ Np and a special return point rp ∈ Np.

We assume that the program points of different procedures are disjoint: Np∩
Nq = ∅ for p �= q. This can always be enforced by renaming program points.

We write N for
⋃

p∈Proc Np, E for
⋃

p∈Proc Ep, and A for
⋃

p∈Proc Ap. We
also agree that Base = {e | A(e) ∈ Stmt} is the set of base edges, Callp = {e |
A(e) = p} is the set of edges that call procedure p, and Pcallp,q = {e | A(e) =
(p, q)} is the set of edges that call procedure p and q in parallel. Moreover,
we write Call for

⋃
p∈Proc Callp and Pcall for

⋃
p,q∈Proc Pcallp,q.

Example 5.1.1. Figure 5.1 shows an example parallel flow graph with three
procedures, Main , p, and q. The entry state of each procedure is marked by
an arrow and the return state is indicated by a doubly circled state. The edge
annotation skip is suppressed for clarity.

The main procedure of the example flow graph sequentially starts proce-
dures p and q. Procedure p sets variable y to an arbitrary non-negative value
and initializes x by 0. Procedure q has a choice: it can execute either the
upper path, where it starts two new instances of q in parallel, or the lower
path, where it increments x by 2. Note that arbitrarily many instances of q
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6 9
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8

3 4 5

0 1 2

q:

x := x + 2

q‖q
y := 0 x := 0

p:

y := y + 1

Main :
p q

Fig. 5.1. Example of a parallel flow graph.

can run in parallel. Upon termination y can hold an arbitrary non-negative
number and x can hold an arbitrary even positive number. ��

The purpose of the remainder of this chapter is to set up a number of
constraint systems, the solutions of which capture certain sets of program
executions. In the next section we define an operational semantics that is
useful as a reference point for setting up these constraint systems correctly.

5.2 Operational Semantics

We define a symbolic operational semantics of parallel flow graphs that spec-
ifies possible sequences of atomic actions. The evaluation of base statements
is not described in this semantics. Thus, the configurations of the operational
semantic represent control information only. In a sequential flow graph con-
trol information is simply given by a single flow-graph node. In a sequential
program with procedures configurations would consist of sequences of flow-
graph nodes. Such a sequence would model a stack of return addresses (or
rather return nodes). In parallel flow graphs procedures can also be called
in parallel. We model this by generalizing configurations from sequences to
trees. Each node of the tree is labeled by a flow-graph node. Each inner node
of the tree has either degree one—such nodes correspond to return addresses
from simple calls or to return addresses from parallel calls where one of the
parallel threads has terminated already—or degree two—such nodes corre-
spond to return addresses from parallel calls. The active control points are
given by the leaves of the tree. Correspondingly, transitions are induced by
the leaves. Transitions are labeled by base edges e, procedure names p, pairs
of procedure names p0‖p1, or the symbol ret. There are four transition rules:

Base Step Rule: c
e−→ c′, if e = (u, v) ∈ Base and c′ results from c by

replacing a leaf labeled u by a leaf labeled v.
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if e = (u, v) ∈ Base

vu

e

Simple Call Rule: c
p−→ c′, if there is an edge e = (u, v) ∈ Callp such that

c′ results from c by replacing a leaf labeled u by a tree consisting of two
nodes, a root labeled v and a successor node of the root labeled ep.

if e = (u, v) ∈ Callp

vu

p

ep

Parallel Call Rule: c
p0‖p1−→ c′, if there is an edge e = (u, v) ∈ Callp0,p1 such

that c′ results from c by replacing a leaf labeled u by a tree consisting of
three nodes, a root labeled v with two successor nodes labeled ep0 and
ep1 .

if e = (u, v) ∈ Pcallp0,p1

vu

ep1ep0

p0‖p1

Return Rule: c
ret−→ c′, if c′ results from c by removing a leaf labeled by rp

for some p ∈ Proc.

rp

ret

Note that the father of the node labeled rp may become a leaf after
application of this rule and may thus become active again. This models
a return to the stacked return address. Just as well, however, the father
of the node labeled rp may still have a child if it has degree two in c as
indicated by the dotted line in the picture. In this case the father becomes
active only after the second leaf also vanishes. This models synchronized
termination of threads started by a parallel call.
Note also that the application of this rule to a tree consisting of just a
root results in the empty tree. Such a step models overall termination.
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Let Conf be the set of configurations, i.e., trees the degree of which is bounded
by two and in which each node is annotated by a program point u ∈ N . We
identify each program point u ∈ N with the tree consisting of just a root
labeled with u. We also write nil for the empty tree. A program point u ∈ N
is active in a configuration c, if it labels one of the leaves of c. The predicate
Atu(c) is true if u is active in c and false otherwise.

Let Label = Base∪Proc∪Proc2 ∪{ret} be the set of transition labels and
−→ ⊆ Conf × Label × Conf be the transition relation defined by the rules
above. We define the transitive generalization =⇒⊆ Conf × Label∗ × Conf of
−→, by

ε=⇒ = Id
r·〈l〉
=⇒ = r=⇒; l−→ ,

where ‘ε’ denotes the empty sequence and ‘;’ denotes relational composition.
We write =⇒ for ∪r∈Label∗

r=⇒.

5.3 Atomic Runs

As procedures do not have local variables, only the base edge labels in a tran-
sition sequence are of interest for dependence analysis and constant propaga-
tion. The other labels (calls, parallel calls, and returns) that appear between
these labels can be ignored without losing interesting information. There-
fore, we can abstract transition sequences to sequences of base edges safely.
We call a sequence of base edges an (atomic) run; the set of atomic runs is
Runs = Base∗. The classification ‘atomic’ refers to the fact that flow graph
edges constitute atomic entities of execution; in Section 6 we consider ‘non-
atomic runs’. We define for a label sequence l, l̂ to be the run obtained from
l by retaining just the base edges and removing everything else:

ε̂ = ε and r̂ · 〈l〉 =

{
r̂ · 〈l〉 if l ∈ Base

r̂ otherwise
for r ∈ Label∗, l ∈ Label .

In the following we are going to set up constraint systems for a variety of run
sets. These constraint systems use the following small number of operators
and constants on run sets.

Semantics of base edges: [[e]] = {〈e〉} for e ∈ Base. This characterizes the
run induced by a base edge in isolation.

Sequential composition operator: R ; S = {r · s | r ∈ R, s ∈ S}. This
characterizes the sequential composition of run sets.

Interleaving operator: In order to define the interleaving (or parallel com-
position) operator some notation is needed. Let r = 〈e1, . . . , en〉 be
a sequence and I = {i1, . . . , ik} a subset of positions in r such that
1 ≤ i1 < i2 < · · · < ik ≤ n. Then r|I is the sequence 〈ei1 , . . . , eik

〉. We
write |r| for the length of r, viz. n.
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Then the interleaving of R and S is defined by

R⊗ S = {r | ∃IR, IS : IR ∪ IS = {1, . . . , |r|}, IR ∩ IS = ∅,
r|IR ∈ R, r|IS ∈ S} .

Prefix operator: pre(R) = {r | ∃s : r ·s ∈ R}. This captures prefixes of the
runs in R.

Postfix operator: post(R) = {r | ∃s : s · r ∈ R}. This captures postfixes of
the runs in R.

Alternatively, atomic runs may be defined as sequences of base statements
instead of base edges. For this we only need to re-define Runs as Stmt∗ instead
of Base∗ and [[e]] by [[e]] = {〈A(e)〉}. In this setting we should also re-define the
hat-operator to incorporate the transition from base edges to base statements:

ε̂ = ε and r̂ · 〈l〉 =

{
r̂ · 〈A(l)〉 if l ∈ Base

r̂ otherwise
for r ∈ Label∗, l ∈ Label .

The remainder of this chapter can be read with both interpretations.
By re-defining the operators on run sets, we can obtain non-standard se-

mantics. On the one hand, this is used in Chapter 6 for defining a semantics
for parallel flow graphs in which execution of base edges is no longer as-
sumed to be atomic. On the other hand, we can re-define these operators on
an abstract domain with a finite chain height. Over such a domain we can
effectively solve the constraint systems to be introduced soon. If we can show
that all operators are correct or even precise abstractions of the concrete op-
erators on atomic or non-atomic run sets, standard abstraction theorems from
abstract interpretation ensure that the solution we get is a correct or even
precise abstraction of the run sets characterized by the constraint systems.
This is the idea of constraint-based program analysis.

5.4 The Run Sets of Ultimate Interest

We are ultimately interested in setting up constraint systems that character-
ize for each u ∈ N the following sets of runs:

Reaching runs: R(u) = {r̂ | eMain
r=⇒ c,Atu(c)}.

Terminating runs: T(u) = {r̂ | eMain =⇒ c
r=⇒ nil,Atu(c)}.

One distinguishes between forward - and backward -analyses. Forward-analyses
calculate abstractions of the reaching runs and backward-analyses abstrac-
tions of the terminating runs.

We are also interested for all program points u, v ∈ N in the set of those
runs that potentially transfer information from u to v. We call these the
bridging runs from u to v.
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Bridging runs: Bv(u) = {r̂ | eMain =⇒ cu
r=⇒ cv,Atu(cu),Atv(cv)}.

In the sections that follow, we present constraint systems that charac-
terize the above run sets. That is: the smallest solution of these constraint
systems consists of the run sets defined above. In addition to the above run
sets, auxiliary run sets are necessary in order to formulate these constraint
systems. These auxiliary run sets are introduced stepwise. We always explain
the underlying intuition and outline the correctness proof but leave the details
of the proof to the reader. The constraint systems for same-level, reaching
and terminating runs are essentially taken from [85] where, however, they
are not justified with reference to an explicitly given underlying operational
semantics. The constraint system for bridging runs is new.

5.5 The Constraint Systems

5.5.1 Same-Level Runs

First of all, we characterize so-called same-level runs. Same-level runs of
procedures capture complete runs of procedures in isolation.

Same-level runs of procedures: S(q) = {r̂ | eq
r=⇒ nil} for q ∈ Proc.

As auxiliary sets we consider same-level runs to program nodes.

Same-level runs to program nodes: S(u) = {r̂ | eq
r=⇒ u} for u ∈ Nq,

q ∈ Proc.

Same-level runs of procedures form an important building block for the
other constraint systems. They play a similar role as summary edges in inter-
procedural program analysis:2 the same-level runs of procedure q summarize
the complete effect of call edges e ∈ Callp. Also the complete effect of a par-
allel call edge e ∈ Pcallp0,p1 is obtained easily from the same-level runs of
procedures p0 and p1: it is given by S(p0)⊗ S(p1).

The same-level runs of procedures and program nodes are the smallest
solution of the following constraint system:

[S1] S(q) ⊇ S(rq)
[S2] S(eq) ⊇ {ε}
[S3] S(v) ⊇ S(u) ; [[e]] , if e = (u, v) ∈ Base

[S4] S(v) ⊇ S(u) ; S(p) , if e = (u, v) ∈ Callp

[S5] S(v) ⊇ S(u) ; [S(p0)⊗ S(p1)] , if e = (u, v) ∈ Pcallp0,p1

2 Indeed, the information associated with a summary edge for p usually is an
abstraction of the same-level runs of p.
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It is easy to see that the same-level runs satisfy all constraints:

[S1]: A same-level run of the return point of procedure q gives rise to a same-
level run of q by the Return Rule.

[S2]: It follows trivially from the definition that ε is a same-level run of the
entry point of a procedure.

[S3]: If e = (u, v) is a base edge, we get a same-level run to v by extending a
same-level run to u with e by the Base Steps Rule.

[S4]: If e = (u, v) is an edge that calls p, we get a same-level run to v if
we extend a same-level run to u by a same-level run of p: we follow the
execution underlying the same-level run to v and call p according to the
Simple Call Rule; we then follow the execution underlying the same-level
run of p (with v waiting on the stack to become active) and return to v
according to the Return Rule.

[S5]: Similarly, if e = (u, v) is an edge that calls p0 and p1 in parallel, we
can—after seeing a same-level run to u—follow this edge; then p0 and p1

are performed to completion in parallel, which results in an interleaving
of a same-level run of p0 and p1; after that, execution returns to v. We
thus obtain a same-level run to v by extending a same-level run of u with
an interleaving of same-level runs of p0 and p1.

On the other hand, we can easily prove by induction on the length of the
transition sequences inducing same-level runs, that each same-level run lies
in any solution of the constraint system, in particular in the smallest one: in
the base case we consider the empty execution ε. It can only give rise to the
same-level run ε to eq for some procedure q. But ε is enforced to lie in any
solution of S(rp) explicitly by constraint [S2].

In the induction step, we consider longer executions leading to same-level
runs. The execution underlying a same-level run of a procedure q necessarily
involves a final return from rq after an execution that gives rise to a same-level
run of rq. The latter execution is one step shorter and thus the same-level
run of rq is contained in any solution of S(rq) by the induction hypothesis.
Now, the constraint [S1] ensures that it is also contained in the set assigned
to S(q) in a solution.

The last step of a non-empty execution r inducing a same-level run r̂ to
a program point v must be induced either by the Base Rule or the Return
Rule because the Simple and Parallel Call Rule never lead to a configuration
which consists of just a single state. If the last step is induced by the Base
Rule, the previous configuration is a program point u. Then r̂ is composed of
a same-level run to u and the base edge e = (u, v). The same-level run to u
is induced by a shorter execution and hence contained in the set associated
with S(u) in any solution by the induction hypothesis. Thus, r̂ is in S(v) by
the constraint [S3]. If the last step is induced by the Return Rule, then there
must be a simple or parallel call from which this step returns. The constraints
for simple and parallel call edges ([S4] and [S5]) together with the induction
hypothesis then ensure that r̂ is contained in S(v).
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5.5.2 Inverse Same-Level Runs

We also consider a kind of dual to same-level runs of program points: runs
from a program point to the return point of the corresponding procedure.
We call these inverse same-level runs of program point. They are needed in
order to capture terminating runs.

Inverse same-level runs of program points:
Si(u) = {r̂ | u r=⇒ nil} for u ∈ N .

Inverse same-level runs of procedures and program nodes are obtained by
backwards accumulation as the smallest solution of the following system of
constraints:

[SI1] Si(rq) ⊇ {ε}
[SI2] Si(u) ⊇ [[e]] ; Si(v) , if e = (u, v) ∈ Base

[SI3] Si(u) ⊇ S(p) ; Si(v) , if e = (u, v) ∈ Callp

[SI4] Si(u) ⊇ [S(p0)⊗ S(p1)] ; Si(v) , if e = (u, v) ∈ Pcallp0,p1

The last two constraints refer to same-level runs of procedures. Therefore,
it appears that we need to calculate same-level runs before we can calculate
inverse same-level runs by the above constraint system. However, by adding
for each procedure q ∈ Proc the constraint

[SI5] S(q) ⊇ Si(eq)

we can calculate same-level runs of procedures simultaneously with inverse
same-level runs. Thus, we can also calculate inverse same-level runs in isola-
tion.

It is easy to see that the sets of inverse same-level runs satisfy all con-
straints:

[SI1]: By the Return rule, ε clearly is an inverse same-level run of the return
point rq of a procedure.

[SI2]: If e = (u, v) is a base edge, we get an inverse same-level run of u by
prefixing a same-level run of v with e.

[SI3]: If e = (u, v) is an edge that calls p, we can follow this edge in an
execution from u; then p is performed until termination, which results in
a same-level run of p; after that execution proceeds at v. We thus obtain
an inverse same-level run of u by prefixing an inverse same-level run of
v by a same-level run of p.

[SI4]: Similarly, if e = (u, v) is an edge that calls p0 and p1 in parallel, we can
follow this edge in an execution from u; then p0 and p1 are performed
to completion in parallel, which results in an interleaving of a same-level
run of p0 and p1; after that execution returns to v. We thus obtain an
inverse same-level run of u by prefixing an inverse same-level run of v
with an interleaving of same-level runs of p0 and p1.
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On the other hand, we can easily prove by induction on the length of
the transition sequences inducing inverse same-level runs, i.e. those that lead
to nil, that each inverse same-level run is in the smallest solution of the
constraint system: in the base case we consider the shortest executions that
lead to same-level runs. These are executions of the form rp

ret−→ nil for some
procedure p. They witness that ε ∈ S(rp). But ε is enforced to be in a solution
of S(rp) explicitly by constraint [SI1].

In the induction step, we consider longer executions leading to same-
level runs. These necessarily start with a transition induced by a base edge,
a simple, or a parallel call edge. The resulting run is then composed from
shorter runs as specified in the constraints for base edges ([SI2]), simple calls
([SI3]), and parallel calls ([SI4]), respectively.

5.5.3 Two Assumptions and a Simple Analysis

The following two assumptions simplify the constraint systems that follow:

ASS1: every program point u ∈ Nq in a procedure q can be reached by a
same-level run from the entry point eq of q:

∀q ∈ Proc, u ∈ Nq : S(u) �= ∅ .

ASS2: from every program point u ∈ Nq the return point rq can be reached
by a same-level run:

∀q ∈ Proc, u ∈ Nq : Si(u) �= ∅ .

These assumptions are not as innocent as they may seem at first glance. In
particular it does not suffice to require that there are paths from eq to u and
from u to rq in the flow graph Gq for q. The paradigmatic counter-example
is a procedure that calls itself and has no bypassing terminating branch:

q
q:

rqeq

Although there is a path from eq to rq in the flow graph, no execution can
reach rq from eq, as there is no terminating bypass of the recursive call of
q. Hence both S(rq) and Si(eq) are empty. Examples like this show that we
cannot assume without loss of generality that practical flow graphs satisfy
ASS1 and ASS2.

While assumptions ASS1 and ASS2 simplify the presentation and justi-
fication of the constraint systems in the remainder of this chapter, they are
not strictly necessary. We can well design constraint systems that work in
the general case, but they are more complex and therefore harder to explain.
In order to avoid overloading the presentation we first present and justify
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the simpler constraint systems that work if ASS1 and ASS2 are satisfied.
Afterwards we explain the changes for the general case, cf. Section 5.5.7.

In order to compute the information needed to decide ASS1 and ASS2,
we design a simple analysis procedure. It is based on an abstract interpreta-
tion of the operators and constants used in the constraint systems. We work
with a two point domain (D = {⊥,�},≤) ordered as ⊥ ≤ �. The idea is
that ⊥ represents definite emptiness and � potential non-emptiness of a run
set. Correspondingly, we define the abstraction mapping α : 2Runs → D by
α(∅) = ⊥ and α(R) = � for R �= ∅. The fact that the abstract interpreta-
tion developed below is precise guarantees that it computes indeed ⊥ for all
empty run sets and � just for non-empty run sets. Obviously, α is universally
disjunctive. We define the abstract interpretation of the operators by

x;#y = x⊗# y = x ∧ y , pre#(x) = post#(x) = x , [[e]]# = {ε}# = �
for x, y ∈ D, e ∈ E. It is easy to see that the abstract operators are precise ab-
stractions of the corresponding operators on run sets: a sequential or parallel
composition of two run sets is non-empty iff both arguments are non-empty;
the set of prefixes and the set of postfixes of a run set R are non-empty iff R
is; and each base edge gives rise to a non-empty run set. In other words, α is a
strong homomorphism in the sense of Appendix A. Therefore, by computing
the least solution of the constraint systems for same-level and inverse same-
level runs over the above abstract interpretation we get precise information
about the emptiness of the sets of same-level and inverse same-level runs of
program points.

This analysis is cheap: as (D,≤) has chain height two, the information for
each constraint variable can change at most once in the fixpoint iteration. By
standard work-list techniques, we can organize the computation of the least
solution such that each operator in the constraint system is evaluated at most
once. Thus, the computation can be done in time O(|E|+ |Proc|), the number
of operators in the constraint systems. As in all practical flow graphs out-
degrees of program nodes are bounded, typically by 2, and |Proc| is trivially
bounded by |N | as each procedure has a distinguished entry node, this is
typically O(|N |). In the following we assume that this analysis has been
done such that for each program node u and procedure q the information
whether S(u), Si(u), S(q), or Si(q) is empty or not is readily available.

Another analysis that can determine information about reachability of
program points in parallel flow graphs has been described by Seidl and Steffen
[85] as an instance of their generic analysis framework for solving gen/kill
dataflow problems for parallel programs.

5.5.4 Reaching Runs

As auxiliary sets for characterizing the runs that reach a program point u,
we consider the runs that reach u from a call to procedure q.
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Reaching runs from procedures: R(u, q) = {r̂ | eq
r=⇒ c,Atu(c)} for

u ∈ N , q ∈ Proc.

With this definition, we obviously have R(u) = R(u,Main). Hence we are done
with characterizing reaching runs if we succeed in characterizing reaching runs
from procedures. The latter can be done by the following constraint system:

[R1] R(u, q) ⊇ S(u) , if u ∈ Nq

[R2] R(u, q) ⊇ S(v) ; R(u, p) , if (v, ) ∈ Eq ∩ Callp

[R3] R(u, q) ⊇ S(v) ; [R(u, pi)⊗ pre(S(p1−i))] , if (v, ) ∈ Eq ∩ Pcallp0,p1

The last clause is meant to specify two constraint for i = 0 and i = 1.
The reaching runs satisfy the constraints:

[R1]: Firstly, each same-level run of u clearly is also a reaching run of u.
[R2]: Secondly, if we have a program point v in q that has an outgoing edge

calling p—the situation described in the second constraint—we obtain
a run that reaches u from q when we extend a same-level run r̂ to v
with a run r̂′ that reaches u from p (where r and r′ are the underlying
executions).

[R3]: Thirdly, consider a program point v in q that has an outgoing edge
calling p0 and p1 in parallel, the situation described in the third con-
straint. Similar to the second case, we get a run reaching u by extending
a same-level run of v with a run that reaches u in the parallel call. The
latter can happen either in p0 or p1 hence the two cases with i = 0, 1.
Now until pi has reached u in pi the other procedure p1−i can perform a
prefix of a same-level run.

On the other hand, the constraint system captures all the ways how u
may be reached from eq. There are just three possibilities: either u is on the
same-level, in a simple call, or in a parallel call. These cases are completely
covered by the constraints.

Note that assumption ASS2 is crucial for making the constraint for par-
allel calls sufficiently rich. If it is violated, the partial run exhibited by p1−i

while pi is in the process of reaching u need not be a prefix of a same-level
run. For example, the following procedure q might execute x := e arbitrarily
often, although S(q) and hence pre(S(q)) is empty.

rq
eq

x := e q
q:

A possible remedy is described in Section 5.5.7.
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5.5.5 Terminating Runs

The approach for capturing terminating runs is dual to the one for reaching
runs. As auxiliary sets we consider terminating runs of u in a call to proce-
dure q.

Terminating runs in procedures: T(u, q) = {r̂ | eq =⇒ c
r=⇒ nil,Atu(c)}

for u ∈ N , q ∈ Proc.

Obviously, we have T(u) = T(u,Main) such that it suffices to capture termi-
nating runs in procedures in the constraint system. The constraint system is
dual to the one for reaching runs:

[T1] T (u, q) ⊇ Si(u) , if u ∈ Nq

[T2] T (u, q) ⊇ T (u, p) ;Si(w) , if ( , w) ∈ Eq ∩ Callp

[T3] T (u, q) ⊇ [T (u, pi)⊗ post(S(p1−i))] ; Si(w) , if ( , w) ∈ Eq ∩ Pcallp0,p1

Again, i = 0, 1 in the last constraint. The justification of this constraint sys-
tem is similar to reaching runs; therefore, the details are left to the reader.
We should mention, however, that assumption ASS1 is crucial here, like ASS2
in the case of reaching runs, but for a quite different reason. The difference is
the requirement that the configuration c with Atu(c) is reachable (eq =⇒ c)
in terminating runs, a requirement that has no parallel for reaching runs. As
a consequence, post(S(p1−i)) is now sufficient to capture the interleaving po-
tential in the constraint for parallel calls even in the general case, in contrast
to pre(R(p1−i)) in the corresponding constraint for reaching runs.

However, the reachability requirement for configuration c, implies that
some of the constraints are not satisfied by the sets T(u, q) in the general
case. For example, an inverse same-level run r from a program point u ∈ Nq

is not always a terminating run. Being an inverse same-level run just means
that u

r=⇒ nil holds, but for a terminating run we additionally need eq =⇒ u.
This is implied by ASS1 but can be wrong in the general case. Similarly, we
need that the start node of the edge e in the second and third constraint
can be reached for making the constraints valid for the operationally defined
sets. A possible remedy is to remove the constraints induced by non-reachable
program points. This is detailed in Section 5.5.7.

5.5.6 Bridging Runs

Let v ∈ N be a fixed program point. We want to determine the bridging runs
Bv(u) for each u ∈ N as defined in Section 5.4. As a first step we capture
for each program points u the runs that reach v, when execution is started
directly with u. We call these the simple bridging runs of u w.r.t. v.

Simple bridging runs: Bs
v(u) = {r̂ | u r=⇒ c,Atv(c)} for u ∈ N .
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The simple bridging runs can be characterized as the smallest solution of the
following constraint system:

[BS1] Bs
v(v) ⊇ {ε}

[BS2] Bs
v(u) ⊇ [[e]] ; Bs

v(w) , if e = (u, w) ∈ Base

[BS3] Bs
v(u) ⊇ S(p) ; Bs

v(w) , if e = (u, w) ∈ Callp

[BS4] Bs
v(u) ⊇ Bs

v(ep) , if e = (u, ) ∈ Callp

[BS5] Bs
v(u) ⊇ [S(p0)⊗ S(p1)] ; Bs

v(w) , if e = (u, w) ∈ Pcallp0,p1

[BS6] Bs
v(u) ⊇ Bs

v(epi)⊗ pre(S(p1−i)) , if e = (u, ) ∈ Pcallp0,p1

The last constraint is again included for i = 0, 1.
Let us explain why these constraints cover all the ways how v can be

reached from u. If u = v then there is the trivial way to reach v from u: by
the empty execution; this is covered by Constraint [BS1]. Otherwise, we must
proceed via an outgoing edge (u, w) of u. If this is a base edge e = (u, w), we
first see e and then a run that reaches v from w; this is covered by Constraint
[BS2]. If e is an edge that calls a procedure p, we distinguish two cases:
either v is reached after p has terminated—this case is covered by Constraint
[BS3]—or v is reached during the execution of p—this case is covered by
[BS4]. Similarly, if e is a parallel call of two procedures p0 and p1, we can
reach v either after both procedures have terminated, which is covered by
[BS5]. Or we can reach v in one of the called procedures pi. In this case we
see a run from epi that reaches v interleaved with a prefix of a same-level
run of procedure p1−i. If assumption ASS2 is violated we must again reckon
with procedure p1−i providing runs that are not prefixes of same-level runs,
as was the case for reaching runs. We can solve this problem as for reaching
runs, cf. Section 5.5.7.

The reader should face no difficulties in persuading himself, that the Bs
v(u)

sets indeed solve all constraints.
As a second step we determine the bridging runs in a call to a procedure:

Bridging runs in procedure calls:
Bv(u, q) = {r̂ | eq =⇒ cu

r=⇒ cv,Atu(c),Atv(c)} for u ∈ N .

Clearly, we have Bv(u) = Bv(u,Main) such that we are done, when we have
successfully captured Bv(u, q) for all u, q.

Basically, there are two ways how a bridging run may occur in a call to q.
One possibility is that both u and v are reached in the same simple or parallel
call in q. This case is captured by the following three types of constraints:

[B1] Bv(u, q) ⊇ Bv(u, p) , if e ∈ Eq ∩ Callp

[B2] Bv(u, q) ⊇ Bv(u, pi)⊗ post(pre(S(p1−i))) , if e ∈ Eq ∩ Pcallp0,p1

[B3] Bv(u, q) ⊇ pre(T (u, pi))⊗ post(R(v, p1−i)) , if e ∈ Eq ∩ Pcallp0,p1

[B2] and [B3] apply for i = 0, 1.
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Constraint [B1] captures the case that u and v are reached in the same
simple call. Constraint [B2] is concerned with the case that u and v are
reached in the same procedure pi of a parallel call. Before u is reached in
pi the other procedure can already perform certain actions and it need not
run to completion until v is reached. Therefore, p1−i contributes a middle
piece of a same-level run. Potential middle pieces can be characterized by
pre(post(S(p1−i)) as captured by the second constraint. Constraint [B3] cap-
tures the case that u is reached in procedure pi and v in procedure p1−i.
After pi has reached u it can further proceed; specifically pi contributes a
prefix of a run from T(u) until v is reached in p1−i. In order to reach v, p1−i

must execute a run from R(v, p1−i). It can execute a prefix of this run before
pi leaves u. Therefore, we see a postfix of a run from R(v, p1−i) as part of the
bridging run.

The second possibility is that u and v are not reached in the same simple
or parallel call. This gives rise to the following constraints:

[B4] Bv(u, q) ⊇ Bs
v(u) , if u ∈ Nq

[B5] Bv(u, q) ⊇ T (u, p) ;Bs
v(w) , if ( , w) ∈Eq ∩ Callp

[B6] Bv(u, q) ⊇ [T (u, pi)⊗ post(S(p1−i))] ; Bs
v(w) , if ( , w) ∈Eq ∩ Pcallp0,p1

where i = 0, 1 in the last constraint.
The first case is that u is reached on same-level, i.e. in the current instance

of q. Then we see a simple bridging run of u (Constraint [B4]). The second
case is that u is reached in a procedure p called by a simple call edge e =
( , v) ∈ Eq. Then we see a run from T (u, p) followed by a simple bridging run
from w (Constraint [B5]). The third case is that u is reached in a procedure
pi called by a parallel call edge e = ( , v) ∈ Eq. Then we see a run from
T (u, pi)⊗post(S(p1−i)) followed by a simple bridging run from w (Constraint
[B6]).

5.5.7 The General Case

In this section we describe the changes that are necessary in the general case,
i.e., if assumptions ASS1 and ASS2 are potentially violated.

As explained in connection with constraint [R3] one of the problems is that
in the general case pre(S(q)) does not capture all partial runs of procedure
q. Thus, interleaving R(u, pi) with pre(S(p1−i)) does not capture all possible
run that reach u in a parallel call. This problem also arises in constraints [BS6]
and [B2]. A possible remedy is to introduce new variables P (q), q ∈ Proc, that
characterize finite prefixes of (finite or infinite) runs, i.e. P(q) = {r̂ | eq

r=⇒ c},
and to use P (p1−i) instead of pre(S(p1−i)) in [R3], [BS6], and [B2]. A simple
way to calculate P(q) is to add a constraint of the following form for each
procedure q and program point u to the constraint system for reaching runs:3

3 If we are working with a non-atomic interpretation of assignments we must use
the following constraint instead of [P]:
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[P1] P (q) ⊇ P (eq)

[P2] P (u) ⊇ {ε}
[P3] P (u) ⊇ [[e]] ; P (v) , if e = (u, v) ∈ Base

[P4] P (u) ⊇ P (p) , if (u, ) ∈ Callp
[P5] P (u) ⊇ S(p) ; P (v) , if (u, v) ∈ Callp
[P6] P (u) ⊇ [P (p0) ⊗ P (p1)] , if (u, v) ∈ Pcallp0,p1

[P7] P (u) ⊇ [S(p0) ⊗ S(p1)] ; P (v) , if (u, v) ∈ Pcallp0,p1

Fig. 5.2. A constraint system characterizing finite prefixes.

[P] P (q) ⊇ R(u, q) .

While this way of calculating P(q) is easy to specify it has the disadvantage
of introducing |N | · |Proc| new constraints, i.e. quadratically many. Although
this does not spoil the overall asymptotic complexity—already the constraint
system for reaching runs has O(|N | · |Proc|) constraints—we should mention
that P(q) can be calculated also by O(|N |) constraints. A corresponding
constraint system is given in Fig. 5.2. It determines as auxiliary information
finite prefixes of (finite or infinite) runs from program points, defined by
P(u) = {r̂ | u

r=⇒ c} by backwards accumulation and is similar to the
constraint system for simple bridging runs.

A similar problem arises in constraint [B3]: if assumption ASS2 is violated,
pre(T (u, pi)) does not necessarily capture all partial runs exhibited by pi

after reaching u because u could be reached at a configuration from which
termination is impossible. The information needed in place of pre(T (u, pi))
is Q(u, pi) where Q(u, q) = {r̂ | eq =⇒ c

r=⇒ c′,Atu(c)} for u ∈ N , q ∈ Proc.
These sets can be characterized by the constraint system in Fig. 5.3

The above changes ensure that the run sets characterized by the constraint
systems are sufficiently large. They are necessary to make flow analysis based
on abstract interpretation of the constraint systems sound. The changes de-
scribed now ensure that the run sets do not become too large. Thus, they
are necessary to make analyses based on a precise abstract interpretation
complete.

As explained in connection with terminating runs, constraints induced by
unreachable program points are not satisfied by the run sets (defined from the

[P′] P (q) ⊇ pre(R(u, q)) .

In the atomic interpretation, any configuration c satisfies Atu(c) for at least one
program point u. Therefore, the simpler constraint [P] without the pre-operator
is sufficient. In the non-atomic interpretation, however, there are (implicitly)
transient configurations that correspond to intermediate stages of executions in
which no program point is active. Fortunately, from all transient configurations
c a configuration c′ with some active program point is reachable. Therefore, we
can capture the runs to transient configurations by means of the pre-operator.
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[Q1] Q(u, q) ⊇ P (u) , if u ∈ Sq

[Q2] Q(u, q) ⊇ Q(u, p) , if (v, ) ∈ Eq ∩ Callp
[Q3] Q(u, q) ⊇ T (u, p) ; P (w) , if (v, w) ∈ Eq ∩ Callp
[Q4] Q(u, q) ⊇ Q(u, pi) ⊗ post(P (p1−i)) , if (v, ) ∈ Eq ∩ Callp0,p1

[Q5] Q(u, q) ⊇ [T (u, pi) ⊗ post(S(p1−i))] ; P (w) , if (v, w) ∈ Eq ∩ Callp0,p1

Fig. 5.3. A constraint system for partial runs that can be exhibited in a procedure
after a given program point has been reached. All constraints [Q1]-[Q5] are only for
program points v with S(v) �= ∅. In [Q4] and [Q5], i = 0, 1.

operational semantics) that we intend to characterize. As these constraints
pose unnecessary additional requirements they make the solutions larger than
necessary. Fortunately, such constraints are also unnecessary for soundness
and can simply be removed. Specifically, we must include the constraints [T1],
[B1], and [B4] only for program points u with S(u) �= ∅, and the constraints
[T2], [T3], [B2], [B3], [B5], and [B6] only for edges e = (v, w) with S(v) �= ∅.
We have seen in Section 5.5.3, that we can determine this information with
a very simple and cheap analysis.

With the changes described in this section we obtain constraint systems
that are both sound and complete in the general case.

5.6 Discussion

In this chapter we have introduced parallel flow graphs. After that we defined
a symbolic operational semantics. It works on configurations that take the
form of a tree, the nodes of which are annotated by program points. Such a
tree models a generalization of a run time stack that may branch to parallel
stacks in addition to the common stack operations. Branching is crucial to
model parallel calls. We have described the transitions of the operational
semantics by rules that work directly on configurations of this form.

There are obvious alternatives to this way of describing the operational
semantics. We can, for instance, use the approach of Esparza, Knoop, and
Podelski in their work on flow analysis of parallel programs [18, 19]. They map
a parallel flow graph to a PA-processes; PA is a class of process models with
both a sequential and a concurrent composition operator [5, 47]. Execution of
PA-processes in turn is described by a structured operational semantics (SOS)
[73]. This allows them to apply results about model-checking of PA-processes
to flow analysis. For our purposes the approach chosen here is sufficient and
produces less notational overhead.

Based on the operational semantics we have defined a number of run
sets of particular interest and have then developed constraint systems that
characterize these run sets. The constraint systems for same-level runs and
reaching runs are essentially the ones used by Seidl and Steffen [85]. Also the
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constraint systems for inverse same-level runs and terminating runs are indi-
cated in their work. The constraint system for bridging runs, however, is new.
Seidl and Steffen postulate their constraint systems, while we use an opera-
tional semantics as a reference point. While this might be considered a minor
or even trivial difference, in our opinion an operational justification of the
constraint systems increases our understanding of what exactly is specified
by the constraint systems.

Many reasonable variants of the run sets in question may be considered.
For example, one could define reaching runs by

R′(u) = {r̂ | eMain
r=⇒ c =⇒ ε,Atu(c)} .

This definition deviates from our previous definition in that it considers only
configurations c from which termination is possible, i.e., it characterizes the
runs that both reach u and can be completed to a terminating run. In gen-
eral, if assumption ASS2 is violated, this definition gives rise to smaller run
sets. Similarly, many reasonable variants of the other run sets are conceivable
and by techniques similar to the ones of Section 5.5.7 sound and complete
constraint systems for these variants can be constructed. Operational speci-
fications of the run sets in question allow us distinguish these variants much
more clearly than implicit specifications by means of constraint systems.

Validating constraint systems with respect to an operational semantics
has another advantage: it helps to uncover subtle bugs. In the absence of
an operational semantics, Seidl and Steffen, for instance, fail to notice that
constraint [R3] in the constraint system for reaching runs is not rich enough
to characterize all reaching runs in a parallel composition if assumption ASS2
does not hold. We detected this error while trying to justify the soundness of
the constraint system. As a consequence their constraint system for reaching
runs is unsound in the general case. To be fair, we should note that this does
not affect the soundness of their analysis procedure that is not directly based
on the constraint system for reaching runs. We should also say that they solve
the problems that arise when assumption ASS1 is violated correctly. Here
they validly propose to remove edges leaving unreachable program points
before the analysis. This has essentially the same effect as the side conditions
of the form S(u) �= ∅ added to the various constraints in Section 5.5.7.
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The idealization that assignments execute atomically is quite common in the
literature on program verification as well as in the theoretical literature on
flow analysis of parallel programs. However, in a multi-processor environment
where a number of concurrently executing processors share a common mem-
ory this assumption is hardly realistic. In such an environment two threads
of control may well interfere while each of them is in the process of execut-
ing an assignment. The reason is that assignments are broken into smaller
instructions before execution.

As a simple example, consider a program in which a shared variable x is
incremented by two threads in parallel:

x := x + 1 ‖ x := x + 1 .

Let us assume that x holds 0 initially. If assignments execute atomically, this
program clearly will increment x twice and so terminate in a state in which
variable x holds 2. However, in a multi-processor environment this program
may well set x to 1. For example, the following execution may happen: first,
one of the processors accesses the memory in order to get the value of x.
While it is in the process of incrementing this value, but before it has written
back the result, the second processors may access the memory, too, in order
to get the value of x. In such a run, both processors read the initial value 0
for x, both will increment just this value, and both will write back 1 for x.
Consequently, the program will terminate in a state where x holds 1 instead
of 2.

In order to be more specific, let us assume that the processors are stack
machines. Then a compiler might generate the following piece of code for the
assignment x := x + 1:

1 PUSH x
2 PUSH 1
3 ADD
4 POP x

Using unprimed numbers for the statements of the first processor and primed
numbers for the statements of the second one, the two processors may then,
e.g., execute their instructions in the following order:

M. Müller-Olm: Variations on Constants, LNCS 3800, pp. 101-109, 2006.
 Springer-Verlag Berlin Heidelberg 2006



102 6. Non-atomic Execution

1, 2, 1′, 2′, 3′, 4′, 3, 4 .

We leave it to the reader to check that this execution increments x just by 1.
The moral of this discussion is that, in the real world of multi-processor

execution, we cannot assume atomic execution of assignments. What we typ-
ically may safely assume, however, is that single reads of variables and single
writes of variables are atomic, because the access to the memory is usually
synchronized, e.g., through a common bus.

This said, we should mention that there are indeed execution scenarios
for concurrent programs that guarantee atomic execution of assignments. In
particular in a time-shared multi-tasking environment, where concurrent ex-
ecution of threads is simulated by a single processor that switches between
execution of code pieces implementing the different threads, assuming atomic
execution of assignments may be safe, if context switches happen only be-
tween assignments, but not in the process of executing the code implementing
a single assignment. The built-in scheduler of the Transputer, for instance,
performs context switches only after certain types of instructions that typi-
cally end execution of assignment code [34].1

Note how non-atomic execution of assignments was modeled in the above
example: first each assignment was broken into the smaller instructions of
the stack machine; each of these instructions may be considered as an atomic
unit of execution. Then the two threads 1, 2, 3, 4 and 1′, 2′, 3′, 4′ of more
fine-grained stack machine instructions was interleaved. This example tells
us that we can develop an interleaving semantics for parallel programs that
adequately models non-atomic execution of assignments by means of breaking
assignments into more fine-grained atomic actions, an observation that is
exploited in a moment.

The purpose of this chapter is to provide parallel flow graphs with an
interleaving semantics that models non-atomic execution of assignments ade-
quately. For this purpose we define a domain NR of sets of (non-atomic) runs
and provide adequate definitions for the constants and operators used in the
constraint systems in Section 5.5. Specifically, we provide

– an interpretation [[e]] ∈ NR for the non-atomic runs of a base edge; and
– interpretations for the operators ;, ⊗, pre, and post used in the constraint

systems.

Solving the constraint systems from Section 5.5 over this new interpreta-
tion immediately gives us adequate definitions for the reaching, terminating,

1 The Transputer designers chose this strategy in order to make context switches
cheap and fast. In typical code, the contents of certain registers used for expres-
sion evaluation is no longer needed after such instructions. Therefore, these reg-
isters are not stored during context switches, which makes context switches fast.
Actually, it is the compiler writer’s task to ensure that the generated code does
not rely on the registers keeping their contents after such instructions. Atomic
execution of assignments in typical code is a neat side-effect of this design.
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and bridging runs of a parallel flow graph when assignments execute non-
atomically.

6.1 Modeling Non-atomic Execution by Virtual
Variables

Suppose given a parallel flow graph and let X be the set of program variables
which the statements of the flow graph refer to. In order to explain the
meaning of non-atomic statements appropriately suppose furthermore given
an infinite set V of virtual (or internal) variables disjoint from X . Intuitively,
virtual variables are used to store intermediate results that are private to
the threads. The parallel composition (or interleaving) operator defined later
ensures that parallel threads do not interfere on virtual variables. We use the
letters x, y to range over X , u, v to range over V , and the letters a, b to range
over X ∪ V .

For the purpose of the semantics, assignments are split into atomic oper-
ations. As an example consider an assignment statement x := e(y1, . . . , yk) in
the program where y1, . . . , yk refer to the occurrences of (program) variables
in expression e. There are many sensible atomicity assumptions. For exam-
ple, we could work with the rather pessimistic assumption that just reads and
writes of variables are atomic and that variables appearing more than once
in e are re-read for every occurrences. Then x := e(y1, . . . , yk) is replaced by
a sequence of assignments

〈vπ(1) := yπ(1), . . . , vπ(k) := yπ(k), x := e(v1, . . . , vk)〉 ,
where v1, . . . , vk are arbitrary distinct virtual variables and π is a permutation
of {1, . . . , k}. The idea is that the other threads can execute atomic operations
between these assignments.

More coarse-granular atomicity assumptions can be captured in a similar
way. If we assume, for instance, that evaluation of right-hand-side expressions
is atomic then we would replace x := e(y1, . . . , yk) by

v := e(y1, . . . , yk) ; x := v .

The important observation is the following: whatever the specific atomicity
assumption may be, if we assume that the execution of all assignments is
non-atomic, then all assignments in a run that refer to a program variable on
the left hand side have only virtual variables on the right hand side. Thus,
all assignments belong to the set

Asg = {a := e(b1, . . . , bk) | a ∈ X ⇒ b1, . . . , bk ∈ V } .

One way to define a semantics for non-atomically executing assignments is
to transform the assignments in the program prior to semantic interpretation.
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Main :
p‖q

Main :
p‖q

p:

q:
v:=x+1 x:=v

u:=x+1 x:=u

a) Original program. b) Transformed Program.

p:

q:
x:=x+1

x:=x+1

Fig. 6.1. Introduction of virtual variables.

p:
u:=x+1 x:=u

p:
x:=x+1

Main :
p‖p

Main :
p‖p

a) Original program. b) Transformed Program.

Fig. 6.2. Confusion of virtual variables.

As an example consider the program in Fig. 6.1(a) which corresponds to the
example discussed in the introduction. We could transform it to the program
in Fig. 6.1(b) and then apply the standard interpretation. The problem with
this approach is that we must be careful not to confuse virtual variables of
different threads. This is simple if only instances of different procedures run
in parallel: then we can simply use different names for the virtual variables in
different procedures. However, it becomes problematic if different instances of
the same procedure may run in parallel like in the program in Fig. 6.2. Then
we must model the virtual variables by local variables of the procedures which
is not supported by the flow-graph model developed up to now. Therefore, we
use a different approach. Instead of transforming flow graphs we incorporate
the transformation implicitly into the semantic interpretation of assignments.

Before we turn to the technical details of the new semantic interpretation
we revisit the example from Section 4.1 in order to show that the answer
to a constant detection problem may depend on the atomicity assumption
for base statements. This example illustrates also that the main mechanism
underlying the undecidability proof of interprocedural parallel constant de-
tection from Chapter 4 does not carry over to the non-atomic case.
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v := a

b := 0

fork

a := 1

b := v

(a)  Original program (b)  A virtual variable has been introduced

join join

a := 0

b := 0

write(b)

a := 0

write(b)

a := 1

fork

b := a

Fig. 6.3. Introduction of a virtual variable.

6.2 A Motivating Example

Consider again the following program for which a control flow graph-like
representation is shown in Figure 6.3 (a):

a := 1; [(a := 0; b := 0;write(b)) ‖ b := a] .

Assume first that assignment statements execute atomically. From Section 4.1
we know that under this assumption variable b is a (copy) constant of value 0
at the write instruction. Let us briefly recall the underlying reasoning. In any
execution b := 0 must be executed either after or before b := a in the parallel
thread. If it is executed after b := a then b holds 0 at the write statement
because 0 is assigned to b in the last executed assignment, b := 0. On the
other hand, if b := 0 is executed before b := a then also the re-initialization
of a, a := 0, is executed before b := a such that b := a also loads the value 0
to b.

The situation is dramatically different if assignment statements may ex-
ecute non-atomically. If, in particular, the assignment b := a in the second
thread executes non-atomically, the first thread may execute the two state-
ments a := 0 and b := 0 that kill a and b after a is loaded from the shared
memory but before the loaded value is stored to b. This results in a run of
the program that propagates the value 1 from the initialization a := 1 to the
final write-statement.

As explained in the previous section, we may model the two stage non-
atomic execution of b := a by splitting it into two assignments v := a and
b := v, where v is a new virtual variable that cannot be accessed by the first
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thread (cf. Figure 6.3 (b)). We can think of virtual variable v as representing
the register in which the value loaded from the common memory is stored.
This register is private to the second thread and therefore there can be no
interference on this variable. Because of this, we can consider each of the
virtual assignments v := a and b := v to be atomic. The resulting program
has the run

r = 〈a := 1, v := a, a := 0, b := 0, b := v,write(b)〉 .

which—as the reader can easily verify—propagates the value 1 from the ini-
tialization a := 1 to the write-statement. Thus, run r witnesses that b is not a
copy constant at the write statement, in sharp contrast to the state of affairs
under the assumption that assignments execute atomically.

6.3 The Domain of Non-atomic Run Sets

A (non-atomic) run r is a sequence of assignments from the set Asg defined
above: Runs = Asg∗. We write virtual(r) for the set of virtual variables ap-
pearing in run r. As the specific choice of virtual variables is immaterial,
we assume that all considered sets of runs are closed under bounded renam-
ing of virtual variables. This allows a simple and adequate definition of the
composition operators. In order to allow a technically clean treatment of this
assumption, let ≡ ⊆ Runs× Runs be the equality of runs up to bounded re-
naming of virtual variables, i.e. r ≡ r′ hold if and only if r′ can be obtained
from r by bounded renaming of virtual variables.

Proposition 6.3.1. ≡ is an equivalence. ��
For a set of runs R ⊆ Runs we write R≡ for the closure of R w.r.t. ≡:

R≡ = {r ∈ Runs | ∃r′ ∈ R : r ≡ r′} .

Obviously, this defines a closure operator.

Proposition 6.3.2.

1. R ⊆ R≡ .
2. (R≡)≡ = R≡ .
3. R ⊆ S implies R≡ ⊆ S≡. ��

The domain NR is given by the sets of runs that are closed under ≡:

NR = {R ⊆ Runs | R = R≡} .

The members of NR model sets of runs in a scenario where assignments
execute non-atomically.
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Lemma 6.3.1. (NR,⊆) is a complete lattice with least element ⊥NR = ∅ and
greatest element �NR = Runs.

Proof. (NR,⊆) is a sub-lattice of the power set lattice (2Runs,⊆). To show
this, we have to check, that NR is closed under arbitrary intersections and
unions.

Here is the proof for intersection. Suppose R ⊆ NR and r, r′ ∈ Runs with
r ≡ r′. We have to show that r ∈ ⋂R if and only if r′ ∈ ⋂R which is
simple:

r ∈
⋂
R

iff [Definition of
⋂R]

∀R ∈ R : r ∈ R

iff [R ⊆ NR, hence all R ∈ R are closed under ≡]
∀R ∈ R : r′ ∈ R

iff [Definition of
⋂R]

r′ ∈
⋂
R .

The proof for unions is just as simple and, therefore, omitted.
The least and greatest element of (2Runs,⊆) are ∅ and Runs, respectively.

It is obvious that both of them are closed under ≡ and hence are also the
least and greatest elements, respectively, of (NR,⊆). ��
In the sections that follow we provide definitions for the operators and con-
stants appearing in the constraint systems and show that they are well-
defined.

6.3.1 Base Statements

We can work with various atomicity assumptions as discussed above. The
most natural and conservative one is that just single reads and writes of vari-
ables are atomic and that variables appearing more than once in an expression
are re-read for every occurrence. This is captured by defining the semantics
of an assignment statement, [[x := e(y1, . . . , yk)]] ∈ NR, where y1, . . . , yk refer
to the variable occurrences in e, as the set of runs of the form

〈vπ(1) := yπ(1), . . . , vπ(k) := yπ(k), x := e(v1, . . . , vk)〉 ,

where π is a permutation of {1, . . . , k} and v1, . . . , vk are arbitrary distinct
virtual variables. It is readily verified that [[x := e(y1, . . . , yk)]] is well-defined,
i.e., that it is a member of NR. We have to show that [[x := e(y1, . . . , yk)]] is
closed under ≡ which is obvious as we admitted an arbitrary choice of virtual
variables.
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We may also work with more coarse-grained semantics of assignments. For
our purposes the choice is arbitrary, because the dependence trace abstraction
of an assignment will be precise with respect to any of these definitions.

Obviously, the only non-atomic run of statement skip is the empty run.
Hence, [[skip]] = {ε}. Obviously, [[skip]] ∈ NR.

The non-atomic runs induced by a base edge e ∈ Base are the non-atomic
runs of the statement associated with e: [[e]] = [[A(e)]], where A(e) is the base
statement associated with base edge e in the underlying flow graph.

6.3.2 Sequential Composition

The sequential composition operator, · ; · : NR × NR → NR, which is written
as an infix operator, is defined by

R ; S = {r · s | r ∈ R, s ∈ S, virtual(r) ∩ virtual(s) = ∅}≡ .

The condition about the local variables ensures that runs composed sequen-
tially do not interact on local variables. It could be replaced by a condition
that in a run all local variables are initialized before they are used. However,
the latter condition would not be preserved by the post-operator and, there-
fore, we prefer the chosen solution. The outer closure operator ensures that ;
is well-defined

6.3.3 Interleaving Operator

In order to define the interleaving (or parallel composition) operator we recall
some notation from Chapter 5. Let r = 〈e1, . . . , en〉 be a sequence and I =
{i1, . . . , ik} a subset of positions in r such that 1 ≤ i1 < i2 < · · · < ik ≤ n.
Then r|I is the sequence 〈ei1 , . . . , eik

〉. We write |r| for the length of r, viz.
n. The interleaving operator, ⊗ : NR× NR→ NR, which we write in an infix
form, is defined by

R⊗ S = {r | ∃IR, IS : IR ∪ IS = {1, . . . , |r|}, IR ∩ IS = ∅,
r|IR ∈ R, r|IS ∈ S, virtual(r|IR) ∩ virtual(r|IS) = ∅}≡ .

The condition about the local variables in r|IR and r|IS ensures that parallel
threads do not exchange values via local variables. The application of the
closure operator (·)≡ guarantees well-definedness: R⊗S ∈ NR for R, S ∈ NR.

Suppose r, s, t ∈ Runs with virtual(r) ∩ virtual(s) = ∅. We call t an inter-
leaving of r and s if

∃Ir , Is : Ir ∪ Is = {1, . . . , |r|}, Ir ∩ Is = ∅, t|Ir = r, t|Is = s

and denote the set of interleavings of r and s by r ⊗ s.
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6.3.4 Pre-operator

The pre-operator, pre : NR→ NR is defined as follows:

pre(R) = {r ∈ Runs | ∃r′ ∈ Runs : r · r′ ∈ R} .

Lemma 6.3.2. pre is well-defined.

Proof. We have to show that, for any R ∈ NR, pre(R) is closed under ≡. So
suppose given r, s ∈ Runs with s ≡ r ∈ pre(R). Then there is r′ ∈ Runs with
r · r′ ∈ R. By bounded renaming of local variables in r′ we can construct a
run s′ such that s · s′ ≡ r · r′. As R is closed under ≡, s · s′ ∈ R and hence
s ∈ pre(R). ��

6.3.5 Post-operator

Analogously to the pre-operator, the post operator post : NR → NR is defined
as follows:

post(R) = {r ∈ Runs | ∃r′ ∈ Runs : r′ · r ∈ R} .

Lemma 6.3.3. post is well-defined. ��

6.4 Conclusion

We have defined a complete lattice (NR,⊆) the members of which model sets
of runs in a scenario in which assignment statements execute non-atomically.
In order to enable an interleaving semantics to adequately capture the ef-
fect of non-atomic execution of assignments, we resorted to virtual variables
that model storage locations that are private to threads. The members of NR
are those sets of runs that are bounded under renaming of virtual variables.
We have provided definitions for the operators and constants appearing in
the constraint systems that capture reaching, terminating, and bridging runs
in a parallel flow graph. The (smallest) solution of these constraint systems
over this new interpretation induces a semantics of parallel flow graphs that
captures non-atomic execution of assignments. Thus, it provides another ref-
erence point for assessing flow analyses. We will put this idea to advantage in
Chapter 7 where we show that the dependence trace interpretation developed
there is a precise abstraction of the non-atomic interpretation of parallel flow
graphs.
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We can indirectly detect copy constants and eliminate faint code on the
basis of the following information: given a program point u and a variable
x of interest; when control is at another program point v, which variables y
may influence the value of x at u? Clearly, this information can be derived
from the set of bridging runs from u to v and we have a constraint system
characterizing this set (cf. Chapter 5.5). We would like to compute the above
information by means of a precise and effective abstract interpretation. Before
we start with the technical development we give a brief overview.

We call a pair of variables (x, y) a dependence and say that a run r exhibits
the dependence (x, y) if the value of y after execution of r depends on the
initial value of x (cf. Section 7.1 for the formal definition). Unfortunately, we
cannot use dependences themselves as abstract domain because, in general,
we cannot obtain the dependences of a parallel composition of run sets from
the dependences of the components (cf. Section 7.2). Therefore, an abstrac-
tion employing just dependences cannot be sound and complete at the same
time. We need to collect more information in the abstract domain.

The basic idea is to collect not only dependences but sequences of de-
pendences (dependence sequences) that can successively be exhibited by a
run. For example, the run r1 = 〈c := b, e := d〉 has 〈(b, c), (d, e)〉 as one of its
dependence sequences. This dependence sequence plays a dual role: on the
one hand, it captures the potential of r1 to exhibit the dependence (b, e) if a
parallel run fills the gap between c and d (like, e.g., r2 = 〈d := c〉) and, on
the other hand, its potential to successively fill the gaps (b, c) and (d, e) in a
parallel run (like, e.g., in r3 = 〈b := a, d := c, f := e〉.

Further information must be collected. To see why, compare the run r4 =
〈b := 0, c := b, e := d, e := 0〉 with r1. Unlike r1, r4 does not have the potential
to exhibit the dependence (b, e) if a parallel run fills the gap between c and d,
but it is still able to successively fill the gaps (b, c) and (d, e) in a parallel run.
The difference is that in r4, unlike in r1, the part of the run before b is read
and after e is written is not transparent for b and e, respectively. Therefore,
we refine dependence sequences to dependence traces in which we record in
addition to a dependence trace by two Boolean values, whether the parts of
the run before the source variable of the first dependence is read and after
the target variable of the final dependence is written are transparent for these
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variables. Run r1 for instance has the dependence trace (1, 〈(b, c), (d, e)〉, 1)
which r4 has not, but both share the dependence trace (0, 〈(b, c), (d, e)〉, 0). In
order to allow a proper propagation of transparency information in sequential
composition, we furthermore collect in the abstraction the set of variables for
which a transparent run exists.

According to these ideas, we can abstract a set of (non-atomic) runs R to
a pair (TR, DR) consisting of the set of variables

TR = {x | ∃r ∈ R : r is transparent for x}

and the set of dependence traces

DR = {τ | ∃r ∈ R : τ is a dependence trace of r} .

On this abstraction of run sets, we can indeed define abstract operators that
precisely mirror the operators on sets of non-atomic runs that are used in the
constraint systems of Section 5.5. However, we are not yet done. The problem
is, that this abstract domain is not effective, because DR can be infinite. In
order to obtain an effective domain, we have to go one step further.

For this purpose, we define a subsumption order, written �, on transition
traces. The intuition is that a transition trace τ is subsumed by another
transition trace τ ′ if τ ′ has fewer gaps than τ—we write this as τ � τ ′ (cf.
Section 7.4). Intuitively, τ ′ is more useful than τ in forming dependences. We
then collect for a run set only the transition traces that are maximal with
respect to the order �. This set forms an antichain with respect to �. It is
not hard to show that all �-maximal dependence traces of a run set are short
in a certain sense made precise in Section 7.6. As there are only finitely many
short dependence traces this makes the abstract domain finite, such that we
can effectively perform fixpoint calculations.

Summarizing, the abstract domain consists of pairs (D, T ) where D is
an �-antichain of short dependence traces and T is a set of variables. It is
not hard to define on this domain abstract counterparts to the sequential
composition operator and to the pre- and post-operator on run sets and to
show that these abstract operators are precise abstractions of the concrete
ones. It is also straightforward to abstract the run sets associated with base
edges precisely.

The interleaving operator, however, poses some complication. The natural
way to compose two transition traces τ and τ ′ concurrently is to use τ to fill
gaps in τ ′ and vice versa. This was our motivation for considering transition
traces in the first place; a precise formalization of this idea is given through
the relation C in Section 7.11.1. However, if τ ′′ is a transition trace obtained
in this way from a transition trace τ of a run r and a transition trace τ ′ of a
run r′, it is not obvious that there is always a run constructed by interleaving
r and r′ that has τ ′′ as one of its transition traces. Otherwise the abstraction
would be imprecise. Indeed this is not true for run sets derived from an
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atomic interpretation of base statements but we can show it for the run sets
appearing with a non-atomic interpretation.

On the other hand, short transition traces can be obtained from non-short
ones in this way. There is thus some reason to suspect that we cannot obtain
all �-maximal dependence traces of the interleaving R1⊗R2 of two run sets
from the �-maximal dependence traces of the components. This would make
the abstract operator unsound. Fortunately, we can show that this is not the
case. The main insight is covered by a shortening lemma, Lemma 7.11.3.

As an auxiliary notion we introduce a further order on dependence traces,
called the implication order which is written as ≤. Its name is justified by
the fact that any run r that has τ as a dependence trace also has τ ′ as a
dependence trace, if τ ≤ τ ′. Therefore, the implication order captures implied
knowledge about dependence traces of runs, hence its name. The implication
order is crucial in particular for a concise formulation of the shortening lemma
mentioned above.

In the remainder of this chapter we elaborate these topics in detail.

7.1 Transparency and Dependences

A run r is called transparent for a variables a if it does not contain an
assignment with a as left hand side variable. Thus, a run is transparent for
a if its execution is guaranteed not to change the value held by a.

Example 7.1.1. The run 〈a := 0, b := c〉 is transparent for all variables except
a and b, in particular for c. ��
A dependence is a pair d = (x, y) of program variables x, y ∈ X . We call x
the source variable and y the destination variable of d. A run r is said to
exhibit dependence (x, y), r ! (x, y) for short, if there are variables a0, . . . , al,
l > 0, expressions e1, . . . , el, and (sub-) runs r0, . . . , rl such that

1. r = r0 · 〈a1 := e1〉 · r1 · 〈a2 := e2〉 · r2 · . . . · 〈al := el〉 · rl;
2. a0 = x, al = y;
3. ei contains ai−1 for i = 1, . . . , l; and
4. ri is transparent for ai for i = 0, . . . , l.

We also say “(x, y) is a dependence of r” in this case.

Example 7.1.2. Run 〈b := a, c := b, e := 0, f := e〉 exhibits the dependences
(a, b), (a, c), and (b, c) but not the dependence (e, f) because e is killed by
the assignment e := 0 before it is read. ��
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7.2 Dependence Traces

In general, the dependences of the interleaving R1⊗R2 of two sets of runs can-
not directly be inferred from the dependences of the component run sets R1

and R2. As an example, consider the two sets of runs R1 := {〈b := a, d := c〉}
and R2 := {〈b := a〉, 〈d := c〉}. Both exhibit just the dependences (a, b) and
(c, d). But the interleaving of R1 with R3 := {〈c := b〉} contains the run
〈b := a, c := b, d := c〉 that exhibits the dependence (a, d) while there is no
run in the interleaving of R2 and R3 that exhibits this dependence.

Thus, an abstraction of sets of runs that faithfully mirrors dependences
must collect more information than just dependences. We propose to employ
dependence traces that are defined in the remainder of this section.

The basic idea is to collect not just dependences but sequences of depen-
dences that can successively be exhibited by a run. For example, we would
record the sequences ϕ = 〈(a, b), (c, d)〉 for the run r1 = 〈b := a, d := c〉 from
R1 but not for R2. Intuitively, ϕ shows us that r1 could exhibit a dependence
from a to d if a parallel component fills the gap from b to c. Dually, it also
indicates that r1 can successively fill the gaps (a, b) and (c, d).

A dependence sequence is a sequence ϕ = 〈(x1, y1), . . . , (xk, yk)〉, k ≥ 0,
of dependences. Note that we allow the empty dependence sequence ε. We
write

←
ϕ for x1 and

→
ϕ for yk, if ϕ �= ε; if ϕ = ε,

←
ϕ and

→
ϕ are undefined. We

denote the set of dependence sequences by DS.

Example 7.2.1. ϕ = 〈(a, b), (c, d)〉 is a dependence sequence with
←
ϕ= a and

→
ϕ= d. ��

Further information must be collected. As explained in the introduction to
this chapter we must distinguish between runs like r2 = 〈a := 0, b := a, d := c〉
and r1 above. Unlike r1, r2 does not have the potential to exhibit dependence
(a, d) if a parallel run fills the gap between b and c, but like r1 it can suc-
cessively fill the gaps (a, b) and (c, d) in a parallel run. The crucial difference
is that in r2 the part of the run before a is read is not transparent for the
source variable of the first dependence, viz. a. A similar difference can arise for
the target variable of the final dependence. Therefore, we refine dependence
sequences to dependence traces.

A dependence trace is a triple τ = (ι, ϕ, κ) consisting of Boolean values
ι, κ ∈ B = {0, 1} coding initial and final transparency and a dependence
sequence ϕ. We assume that ι = 0 and κ = 0 if ϕ = ε. The set of dependence
traces is denoted by DT:

DT = {(ι, ϕ, κ) ∈ B× DS× B | ϕ = ε ⇒ (ι = 0 ∧ κ = 0)} .

A run r is said to exhibit dependence trace τ = (ι, 〈(x1, y1), . . . , (xk, yk)〉, κ),
r ! τ for short, if there are sub-runs t0, . . . , tk, r1, . . . , rk, such that
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1. r = t0 · r1 · t1 · r2 · · · rk · tk;
2. ri exhibits dependence (xi, yi) for i = 1, . . . , k;
3. ι = 1 implies that t0 is transparent for x1; and
4. κ = 1 implies that tk is transparent for yk.

In this case, we call t0 · r1 · t1 · r2 · · · rk · tk a decomposition of r that witnesses
r ! τ . Note that r ! (0, ε, 0) holds for all runs r as witnessed by the trivial
decomposition t0 = r. The trivial dependence trace (0, ε, 0) allows us to
distinguish the dependence trace abstraction of the empty run set from the
abstraction of non-empty run sets. Instead of saying “r exhibits τ” we often
use the phrase “τ is a dependence trace of r”.

Example 7.2.2. Run r1 exhibits the dependence trace (1, 〈(a, b), (c, d)〉, 1) in
contrast to r2. Both runs share the dependence trace (0, 〈(a, b), (c, d)〉, 0). ��
Example 7.2.3. Consider the following run:

r = 〈a := 0, b := a, c := b, c := 0, f := e, e := 0〉 .
One of the dependence traces of r is τ = (0, 〈(a, c), (e, f)〉, 1) as witnessed by
the decomposition r = t0 · r1 · t1 · r2 · t2 where

〈a := 0︸ ︷︷ ︸
t0

, b := a, c := b︸ ︷︷ ︸
r1

, c := 0︸ ︷︷ ︸
t1

, f := e︸ ︷︷ ︸
r2

, e := 0︸ ︷︷ ︸
t2

〉 .

Another decomposition witnessing τ is

〈a := 0︸ ︷︷ ︸
t0

, b := a, c := b︸ ︷︷ ︸
r1

,︸︷︷︸
t1=ε

c := 0, f := e, e := 0︸ ︷︷ ︸
r2

︸︷︷︸
t2=ε

〉 .

The run r has also many other dependence traces, e.g., (1, 〈(b, c), (e, f)〉, 1)
and (1, 〈(e, f)〉, 1). ��
Ultimately, we are interested in dependence traces without gaps that code
complete transfers from one variable to another one, where a gap can either
be a lack of initial or final transparency or a hole from yi to xi+1. Thus, the
dependence traces of ultimate interest are those of the form (1, 〈(x, y)〉, 1).
They correspond to dependences.

Proposition 7.2.1. r ! (1, 〈(x, y)〉, 1) if and only if r exhibits dependence
(x, y). ��
We can abstract a set R of runs to the set DR = {τ | ∃r ∈ R : r ! τ}
of compatible dependence traces and it is possible to define precise abstract
operators on this abstraction.1 However, DR is in general infinite such this
does not lead immediately to an effective domain.
1 For sequential composition we also need the set of variables for which a trans-

parent run exists in order to allow a proper propagation of the transparency
bits.
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Fortunately, it is not necessary to collect all compatible dependence traces
in the abstraction, in order to describe the potential for forming dependences
with a parallel context. It suffices to retain only certain short dependence
traces in the abstraction that subsume the potential of all the other ones.
A number of definitions and observations are necessary to make this precise.
Before we turn to the technical development, let us illustrate this kind of
subsumption by a small example.

Consider the two dependence traces τ1 = (1, (a, b) · (c, d) · (e, f), 1) and
τ2 = (1, (a, d) · (e, f), 1). Intuitively, both have the gap (d, e) but τ1 has the
additional gap (b, c). If a run r of a parallel context can successively fill the two
holes in τ1—i.e. if r is compatible with the dependence trace τ3 = (0, (b, c) ·
(d, e), 0)—it can also fill the single hole in τ2—i.e. r is then also compatible
with τ4 = (0, (d, e), 0). Two interesting relationships between dependence
traces popped up in this discussion. On the one hand, τ is “subsumed” by
τ ′ in the sense sketched above as it has fewer gaps. On the other hand τ4 is
“implied” by τ3 as it has less dependences: any run having τ3 as a dependence
traces also has τ4 as a dependence trace.

We now define two orders on the set of dependence traces that capture
these two relationships, the “implication order” and the “subsumption order”.

7.3 Implication Order

Let ≤ ⊆ DT×DT be the smallest reflexive and transitive relation on the set
of dependence traces that satisfies

1. (ι, ϕ · 〈(x, y)〉 · ψ, κ) ≤ (ι, ϕ · ψ, κ), if ϕ �= ε ∨ ι = 0 and ψ �= ε ∨ κ = 0;
2. (1, ϕ, κ) ≤ (0, ϕ, κ); and
3. (ι, ϕ, 1) ≤ (ι, ϕ, 0).

Proposition 7.3.1. ≤ is a partial order on DT. It is called the implication
order. ��
The implication order ≤ allows us to weaken the information in a dependence
trace in two ways. First of all, we can omit dependences (1.); here we must
be careful not to omit the first or last dependence if the corresponding trans-
parency bit is set, as otherwise the transparency bit might become invalid.
Secondly, we can weaken the information about transparency of the initial or
final part of the run, by changing the transparency bits from 1 to 0 (2. & 3.).

The most appealing fact about ≤ is that it preserves compatibility, which
justifies the name “implication order”.

Proposition 7.3.2 (≤ preserves compatibility). Suppose r ! τ and τ ≤
τ ′. Then r ! τ ′. ��
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a b c d fe g h

a b fe g hτ ≤ τ ′:
a b g hc fτ � τ ′′:

τ :

Fig. 7.1. Implication and subsumption order.

Example 7.3.1. Consider the dependence trace τ = (1, 〈(a, b), (c, d)〉, 0) of
the run r = 〈b := a, c := 0, d := c, d := 0〉. These are the dependence traces
implied by τ :

τ1 = (0, 〈(a, b), (c, d)〉, 0)
τ2 = (1, 〈(a, b)〉, 0)
τ3 = (0, 〈(a, b)〉, 0)
τ4 = (0, 〈(c, d)〉, 0)
τ5 = (0, ε, 0)

i.e., we have τ ≤ τi for i = 1, . . . , 5. All of them are dependence traces of r.
But we do not have τ ≤ τ6 for τ6 = (1, 〈(c, d)〉, 0). And indeed, τ6 is not a
dependence trace of r because variable c is killed before it is read in r. ��

7.4 Subsumption Order

A dependence trace with fewer gaps is more useful for the construction of
dependences. We now define the subsumption order � ⊆ DT×DT. Intuitively,
τ � τ ′ captures that τ ′ has fewer gaps than τ and thus subsumes the potential
of τ for forming dependences with a cooperating parallel context. We define
� as the smallest transitive and reflexive relation that satisfies

(ι, ϕ · 〈(x, y)〉 · ϕ′ · 〈(x′, y′)〉 · ϕ′′, κ) � (ι, ϕ · 〈(x, y′)〉 · ϕ′′, κ) .

Fig. 7.1 illustrates the difference between the implication and the subsump-
tion order. For simplicity, we only show the dependence sequences and omit
the transparency bits. In the top row we show a dependence trace τ , in the
middle row a dependence trace τ ′ that is implied by τ , and in the bottom
row a dependence trace τ ′′ that subsumes τ . The implication order allows
us to omit dependences (and weaken transparency bits). In contrast the sub-
sumption order allows us to remove gaps.

It is obvious from the defining rule that a dependence trace τ ′ that prop-
erly subsumes another dependence trace τ embodies a strictly shorter depen-
dence sequence. Therefore, � satisfies the ascending chain condition.

Proposition 7.4.1. � is a partial order on DT that satisfies the ascending
chain condition: every strictly increasing sequence τ1 � τ2 � · · · is finite. ��
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Note that dependence traces of the form (1, 〈(x, y)〉, 1), which correspond to
dependences by Proposition 7.2.1, are maximal w.r.t. �. This simple obser-
vation is important, as it implies that we cover all dependences even when
we only consider �-maximal dependence traces.

7.5 A Lattice of Antichains

An antichain with respect to � (or �-antichain for short) is a set D ⊆ DT
of dependence traces satisfying

¬ ∃τ, τ ′ ∈ D : τ � τ ′ .

We denote the set of �-antichains by AC. We can lift the subsumption order
to AC as follows:

D � D′ :⇔ ∀τ ∈ D ∃τ ′ ∈ D′ : τ � τ ′ .

Thus, D′ subsumes D, if every dependence trace in D is subsumed by some
dependence trace in D′. We call � the antichain order. This is justified by
the following lemma.

Lemma 7.5.1. � is a partial order on AC.

Proof. It is straightforward to show that � is reflexive and transitive. Let us
show that � is also antisymmetric and hence a partial order.

Suppose D � D′ � D. We show that D ⊆ D′, the reverse inclusion follows
analogously. Suppose τ ∈ D. Then there is τ ′ ∈ D′ with τ � τ ′ as D � D′.
Because of D′ � D, there is τ ′′ ∈ D with τ ′ � τ ′′. Thus, we have

D " τ � τ ′ � τ ′′ ∈ D .

As D is an antichain, this implies that τ = τ ′′. Consequently, all these three
dependence traces must be equal: τ = τ ′ = τ ′′. But then τ = τ ′ ∈ D′. ��
A simple way to form an �-antichain out of an arbitrary subset D ⊆ DT is
to consider the set of �-maximal elements in D. We denote this set by D↑:

D↑ = {τ ∈ D | ¬∃τ ′ ∈ D : τ � τ ′} .

The dependence traces in D↑ subsume all dependence traces in D. In this
sense, no interesting information is lost when going from D to D↑.

Lemma 7.5.2 (↑ subsumes). For any τ ∈ D there is a τ ′ ∈ D↑ such that
τ � τ ′.

Proof. The lemma follows easily with the ascending chain condition. ��
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The operator ↑ is a co-closure operator that yields �-antichains:

Lemma 7.5.3 (↑ is a co-closure operator).

1. D↑ ⊆ D.
2. (D↑)↑ = D↑.
3. D↑ is an �-antichain.
4. (·)↑ is monotonic: D ⊆ E implies D↑ � E↑.

Proof. The proof of these properties is straightforward. ��
The �-antichains together with the lifted subsumption order form a com-

plete lattice.

Lemma 7.5.4. (AC,�) is a complete lattice. The least upper bound (lub)
of a subset D ⊆ AC is

⊔D := (
⋃D)↑ and the least element of (AC,�) is

⊥AC := ∅.
Proof. In order to show that (AC,�) is a complete lattice, it suffices to demon-
strate that any subset D ⊆ AC has a least upper bound. We show that, as
claimed in the lemma, E := (

⋃D)↑ is indeed the least upper bound of D.
Firstly, E is an upper bound of D: we have to show that D � E for any

D ∈ D, which is seen as follows:

τ ∈ D

⇒ [D ∈ D, definition of
⋃D]

τ ∈
⋃
D

⇒ [Lemma 7.5.2, definition E]
∃τ ′ ∈ E : τ � τ ′ .

Secondly, E is smaller than any other bound D. Suppose F is an arbitrary
upper bound of D. Then E � F follows from the following chain of implica-
tions:

τ ∈ E

⇒ [Definition E, Lemma 7.5.3(1.)]

τ ∈
⋃
D

⇒ [Definition of
⋃D]

∃D ∈ D : τ ∈ D

⇒ [D � F as F is an upper bound of D, definition �]
∃τ ′ ∈ F : τ � τ ′ .

The least element of (AC,�) is ⊥AC =
⊔ ∅ = (∅)↑ = ∅. ��
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Let us consider another operator on sets of dependence traces, the downwards
closure operator (·)↓. It is defined for sets D ∈ DT by

D↓ = {τ ∈ DT | ∃τ ′ ∈ D : τ � τ ′} .

We can apply (·)↓ in particular to antichains. Thus, we may consider (·)↓ as
an operator (·)↓ : AC→ 2DT. It is not hard to see that (·)↓ is monotonic.

Proposition 7.5.1. Suppose A, B ∈ AC. Then A � B implies A↓ ⊆ B↓. ��
(·)↑ and (·)↓ are approximate inverses of each other.

Lemma 7.5.5. For any D ∈ DT, we have D↑↓ ⊇ D and D↓↑ ⊆ D. For any
A ∈ AC, we even have A↓↑ = A. As a consequence, ((·)↑, (·)↓) is a Galois
surjection from 2DT to AC:

2DT
(·)↑
−→←−
(·)↓

AC

Proof. D↑↓ ⊇ D: By Lemma 7.5.2, there is, for any τ ∈ D, a dependence
trace τ ′ ∈ D↑ such that τ � τ ′. This implies that τ ∈ D↑↓.

D↓↑ ⊆ D: If τ ∈ D↓↑, then τ is a maximal element in D↓. The maximal
elements in D↓, however, must already be in D, as they cannot be added
to D by lying strictly below another element of D.

A↓↑ = A: It remains to show that A↓↑ ⊇ A. Any τ ∈ A is maximal in A↓.
Therefore, any such τ is also in A↓↑. ��

The fact that ((·)↑, (·)↓) is a Galois surjection from 2DT into AC shows us
that �-antichains form a reasonable abstraction of sets of dependence traces.
It also has other interesting consequences. First of all, it implies that (·)↑ is
universally disjunctive, which is important for ensuring that the abstraction
mapping and the abstract operators defined later are universally disjunctive
as well.

Proposition 7.5.2. (·)↑ : 2DT → AC is universally disjunctive (‘distribu-
tive’). ��
Secondly, it shows us that we can present (AC,�) isomorphically by down-
wards closed sets of dependence traces. From the theory of Galois connec-
tions, we know that the images of the upper and lower adjoint are isomorphic.
This implies that (AC,�), the image of (·)↑, is isomorphic to the image of
(·)↓, which is the set of downwards closed sets of dependence traces ordered
by set inclusion. Note that this isomorphism depends on the fact that the
underlying subsumption order on dependence traces satisfies the ascending
chain condition. Otherwise, Lemma 7.5.2 would fail and we would not have
the property D↑↓ ⊇ D that is crucial for the isomorphism between antichains
and downwards closed sets.
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For our purpose it is more convenient to work with antichains, because
this leads to a more natural definition of the interleaving operator. If we
work with downwards closed sets we may add dependence traces by means of
downwards closure that are not exhibited by any run in the abstracted run
set. These additional dependence traces do not represent actual potential of
the run set and in order to avoid imprecision, we must ensure that they are
not considered for inferring dependence traces of interleavings.

7.6 Short Dependence Traces

A dependence sequence ϕ = 〈(x1, y1), . . . , (xk, yk)〉 is called short if

1. all destination variables of dependences not counting the last one are
distinct: for all 1 ≤ i < j < k, yi �= yj ; and

2. all source variables of dependences not counting the first one are distinct:
for all 1 < i < j ≤ k, xi �= xj .

A dependence trace τ = (ι, ϕ, κ) is called short if the embodied dependence
sequence ϕ is short. We write DTS for the set of short dependence traces:

DTS = {τ ∈ DT | τ is short} .

Example 7.6.1. Consider the run r = 〈c := a, c := b, e := d〉. One of its de-
pendence traces is τ = (1, 〈(a, c), (b, c), (d, e)〉, 1), which is not short due to
the repetition of variable c as a target variable. But run r has also the de-
pendence trace τ ′ = (1, 〈(a, c), (d, e)〉, 1) which is short and subsumes τ . This
is not a coincidence as we will see in a moment (Lemma 7.6.2). ��

We are interested in short dependence traces for two reasons. Firstly, there
are only finitely many of them. This makes the abstract domain introduced
in the next section finite as well and ensures that fixpoints for monotonic
functions on this domain can be calculated effectively. The following lemma
provides a formula for the cardinality of DTS and an asymptotic bound.

Lemma 7.6.1. Let n = |X |. Then |DTS| = 1+4n2n!2
∑n

i=0
1

i!2 = O(n2n+2).

Proof. By the pigeonhole principle, a dependence sequence cannot contain
more than n + 1 dependences without violating the condition of shortness.

Let i ∈ {0, . . . , n}. For forming a dependence sequence 〈d0, . . . , di〉 of
length i+1 in a dependence trace, we can choose arbitrary program variables
as source variable of d0 and as destination variable of di; there are n2 ways of
doing this. We can choose the remaining source variables of d1, . . . , di as an
arbitrary i-permutation of the variables in X . (Recall that an i-permutation
of X is an ordered sequence of i elements of X , with no element appearing
more than once in the sequence). The same holds for the remaining destina-
tion variables of d0, . . . , di−1. As there are n!

(n−i)! i-permutations [13], there
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are thus n2( n!
(n−i)! )

2 short dependence sequences of length i + 1. There are
four possible choices for the transparency bits in a dependence trace with a
given non-empty dependence sequence. In addition we have a single depen-
dence trace with an empty dependence sequence, viz. (0, ε, 0). Summing up,
the number of short dependence traces is thus

1 + 4
n∑

i=0

(
n2

(
n!

(n− i)!

)2
)

= 1 + 4n2n!2
n∑

i=0

1
(n− i)!2

= 1 + 4n2n!2
n∑

i=0

1
i!2

.

Using the well-known fact that n! ≤ nn and bounding the sum by

n∑
i=0

1
i!2
≤

n∑
i=0

1
i!
≤

∞∑
i=0

1
i!

= e

the asymptotic bound O(n2n+2) follows. ��
The asymptotic bound O(n2n+2) for |DTS| is rather rough as it involves

the rather bad estimate nn for n! but suffices for our purposes. Using for
instance Stirling’s approximation [13] for the factorial function, we could
obtain tighter bounds.

The second reason why we are interested in short dependence traces is that
they suffice to capture the potential of runs to aid in forming dependences
‘up to subsumption’ as the following lemma shows.

Lemma 7.6.2 (Short dependence traces subsume). Let r ! τ . Then
there is a short dependence trace τ ′ with r ! τ ′ and τ � τ ′.

Proof. Suppose r ! τ = (ι, 〈(x1, y1), . . . , (xk, yk)〉, κ). We describe a shorten-
ing procedure that can be iterated until a short dependence trace is obtained.

Suppose τ is not already short. Let us assume that Condition 1. is vio-
lated; if Condition 2. is violated we can proceed analogously. Then there are
indices i, j, 1 ≤ i < j < k, with yi = yj. Consider the dependence trace τ ′

obtained from τ by removing the middle part 〈(xi+1, yi+1), . . . , (xj , yj)〉 of
the dependence sequence:

τ ′ := (ι, 〈(x1, y1), . . . , (xi, yi), (xj+1, yj+1), . . . , (xk, yk)〉, κ) .

It is not hard to see that both τ � τ ′ and τ ≤ τ ′. By Proposition 7.3.2 the
latter implies r ! τ ′. ��

We still have to see that we can obtain the short dependence traces of a
composed set of runs from the short dependence traces of the argument run
sets. This is particularly challenging for run sets obtained by interleaving and
will be the topic of Sections 7.8–7.12.

Shortening a dependence trace w.r.t. either ≤ or � results again in a short
dependence trace.
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Lemma 7.6.3 (≤ and � preserve shortness). If τ is short and τ ≤ τ ′

or τ � τ ′, then τ ′ is short.

Proof. All pairs of source or target variables in τ ′ are also pairs of target
variables in τ if τ ≤ τ ′ or τ � τ ′. ��
We denote the set of antichains of short dependence traces by ACS:

ACS = {D ∈ AC | D ⊆ DTS} .

Lemma 7.6.2 implies that �-maximal dependence traces of a run (or run
set) are always short. Therefore, if we restrict attention to short dependence
traces of a run or run set, we still capture all maximal dependence traces. By
working with ACS instead of AC, we code this knowledge into the domain. In
particular, we do not lose dependences because the dependence traces of the
form (1, 〈(a, b)〉, 1) that correspond to dependences are trivially short.

Lemma 7.6.4. (ACS,�) is a complete sub-lattice of (AC,�). Its height is
|DTS|+ 1 = O(n2n+2) where n = |X |.
Proof. Suppose D ⊆ ACS. In order to prove that (ACS,�) is a complete sub-
lattice of (AC,�) we have to show that

⊔D ∈ ACS, i.e. that
⊔D ⊆ DTS:

⊔D =
↑

[Lem. 7.5.4]

(
⋃D)↑ ⊆

↑
[Lem. 7.5.3]

⋃D ⊆
↑

[D ⊆ ACS]

DTS .

We can restrict the downwards closure operator to short dependence
traces, i.e. redefine it by D↓ = {τ ∈ DTS | ∃τ ′ ∈ D : τ � τ ′} for D ⊆ DTS.
It follows as in Lemma 7.5.5 that ((·)↑, (·)↓) is a Galois surjection from 2DTS

into ACS:

2DTS
(·)↑
−→←−
(·)↓

ACS

As a consequence (ACS,�) is isomorphic to the lattice of downwards closed
subsets of DTS, ordered by set inclusion. The latter is a sub-lattice of (2DTS,⊆
). Hence its height (and thus the height of (ACS,�)) cannot be larger than
the height of (2DTS,⊆) which is |DTS|+ 1.

On the other hand, we can construct an ascending chain of size |DTS|+1.
Let (x1, . . . , x|DTS|) be a topological sort of (DTS,�), i.e., a list containing all
elements of DTS such that xi � xj implies i ≤ j for all i, j ∈ {1, . . . , |DTS|}.
Then we can define a chain of length DTS + 1 by choosing A0 = ∅ and
Ai = (Ai−1∪{xi})↑ for i = 1, . . . , |DTS|. Ai−1 � Ai is obvious, and Ai−1 �= Ai

holds because Ai−1 ⊆ {x1, . . . , xi−1}, which is seen by a straightforward
induction. Thus, xi is maximal in Ai−1 ∪ {xi} due to the topological sort
property.

Lemma 7.6.1 gives the asymptotic bound |DTS|+ 1 = O(n2n+2). ��
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7.7 The Abstract Domain

Let us now define the abstract domain. The values of the abstract domain
AD are pairs (T, D) consisting of a set T ⊆ X of variables and an �-antichain
D of short dependence traces:

AD = 2X × ACS .

In the applications the dependence traces in D form the more interesting
piece of information. T represents the variables for which a transparent run
exists. This information is necessary in order to allow a proper propagation
of initial and final transparency information in sequential contexts. The order
on the abstract domain, which we also denote by the symbol �, is defined as
the lift of the inclusion order on the T component and the antichain order �
on the D component: (T, D) � (T ′, D′) iff

1. T ⊆ T ′ and
2. D � D′ .

(AD,�) is the product lattice of the complete lattices (2X ,⊆) and (ACS,�)
and hence also a complete lattice. Both of these lattices have ∅ as their least
element. Hence, (∅, ∅) is the least element of �.

Lemma 7.7.1. (AD,�) is a complete lattice with least element (∅, ∅). Its
height is O(n2n+2) where n = |X |.
Proof. It only remains to prove the asymptotic bound for the height. The
height of AD is the sum of the height of (2X ,⊆), which is n + 1, and the
height of (ACS,�), which is O(n2n+2) by Lemma 7.6.4. This implies the
stated bound. ��
Let us now define an abstraction mapping α : NR → AD that captures the
intuition how non-atomic run sets are abstracted to values from AD:

α(R) = (TR, DR) , where
TR = {x ∈ X | ∃r ∈ R : r is transparent for x} and
DR = {τ ∈ DT | ∃r ∈ R : r ! τ}↑ .

Before we proceed, let us show that this is a proper definition.

Lemma 7.7.2. α is well-defined.

Proof. We have to show two things for an arbitrary R ∈ NR:

1. DR consists of short dependence traces.
2. DR is an �-antichain.
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Ad 1.: Assume there is τ ∈ DR that is not short. Then there is r ∈ R with
r ! τ . By Lemma 7.6.2, there is a short dependence trace τ ′ with r ! τ
and τ � τ ′. In particular τ ′ ∈ {τ ∈ DT | ∃r ∈ R : r ! τ} and, as τ ′ is
short and τ is not, we even have τ � τ ′. But this shows that τ is not
maximal in {τ ∈ DT | ∃r ∈ R : r ! τ} and hence is not a member of DR,
a contradiction.

Ad 2.: This is ensured by Lemma 7.5.3(4.). ��
The abstraction α(R) of a run set R is induced by the following abstraction
β(r) of the single runs r ∈ R:

β(r) = (Tr, Dr) , where
Tr = {x ∈ X | r is transparent for x} and
Dr = {τ ∈ DT | r ! τ}↑ .

Lemma 7.7.3. Suppose R ∈ NR. Then α(R) =
⊔{β(r) | r ∈ R}.

Proof. We have
⊔{β(r) | r ∈ R} = (

⋃
r∈R Tr,

⊔
r∈R Dr). It is obvious that

TR =
⋃

r∈R Tr. On the other hand, we have
⊔

r∈R Dr = (
⋃

r∈R{τ | r ! τ}↑)↑,
by Lemma 7.5.4. It is not hard to show that this equals DR by considering
the �- and the �-direction separately. ��
The fact that α is induced by an abstraction on single runs has nice conse-
quences.

Proposition 7.7.1. α is monotonic: R ⊆ R′ implies α(R) � α(R′). ��
Proposition 7.7.2. α is universally disjunctive. ��
The latter property is crucial for precision of the abstract interpretation of
constraint systems, cf. Chapter 8, and shows us that α provides a proper
abstraction of run sets by being the lower adjoint of a Galois connection. For
completeness let us introduce the corresponding upper adjoint. It is γ : AD→
NR, defined by

γ(T, D) = {r | Tr ⊆ T, Dr � D} .

Proposition 7.7.3. (α, γ) is a Galois connection between NR and AD:

NR
α

−→←−
γ

AD. ��

We leave the proof that γ is well-defined and forms a Galois connection with
α to the reader.

In the sections that follow we define composition operators on AD and
show that they are precise abstractions of the corresponding operators on
NR. We start with the pre- and the post-operator that are rather simple.
Then we discuss sequential composition. Afterwards we consider the most
interesting and challenging operator: interleaving. Finally, we discuss the ab-
stract semantics of base edges.
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7.8 Pre-operator

We define the (abstract) pre-operator, pre# : AD→ AD, as follows:

pre#(T, D) =
{

(∅, ∅) , if D = ∅
(X, {(ι, ϕ, κ) ∈ DT | (ι, ϕ, 0) ∈ D}) , if D �= ∅ .

Lemma 7.8.1. pre# is well-defined: for any (T, D) ∈ AD, pre#(T, D) ∈ AD.

Proof. The only property that is not obvious is that A := {(ι, ϕ, κ) ∈ DT |
(ι, ϕ, 0) ∈ D} is an antichain of short dependence traces. First of all, any
dependence trace (ι, ϕ, κ) ∈ A inherits being short from the dependence trace
(ι, ϕ, 0) ∈ D that induces its inclusion in A. Secondly, assume that there are
distinct dependence traces τ, τ ′ ∈ A with τ � τ ′. By the definition of the
subsumption order, the transparency bits in τ and τ ′ must coincide, i.e. we
can write them in the form τ = (ι, ϕ, κ) and τ ′ = (ι, ϕ′, κ). From τ � τ ′

it follows that also (ι, ϕ, 0) � (ι, ϕ′, 0). But then (ι, ϕ, 0) and (ι, ϕ′, 0) are
two distinct comparable dependence traces in D, which is a contradiction
to D being an antichain. Hence pre#(T, D) must be an antichain of short
dependence traces. ��
The crucial observation for the adequacy of the definition of pre# is this.

Lemma 7.8.2. r ! (ι, ϕ, 0) if and only if there is a prefix r′ of r with r′ !
(ι, ϕ, κ).

Proof. Let ϕ = 〈(x1, y1), . . . , (xk, yk)〉.
‘⇒’: Suppose r ! (ι, ϕ, 0). If κ = 0, we can choose r′ = r. So assume κ = 1.

Choose a decomposition t0 · r1 · · · rk · tk of r that witnesses r ! (ι, ϕ, 0).
Let r′ = t0 · r1 · · · rk. Then, clearly, r′ is a prefix of r and t0 · r1 · · · rk · t′k
with t′k = ε is a decomposition of r′ that witnesses r′ ! (ι, ϕ, 1).

‘⇐’: Suppose r′ is a prefix of r with r′ ! (ι, ϕ, κ). Choose r′′ with r = r′ · r′′,
and let t0 ·r1 · · · rk ·tk be a decomposition of r′ that witnesses r′ ! (ι, ϕ, κ).
Then t0 ·r1 · · · rk ·t′k with t′k = tk ·r′′ is a decomposition of r that witnesses
r ! (ι, ϕ, 0). ��

We can now show that the abstract pre-operator is a precise abstraction of
the concrete pre-operator.

Theorem 7.8.1 (Abstract pre-operator is precise). Suppose R ∈ NR.
Then α(pre(R)) = pre#(α(R)).

Proof. If R = ∅, then α(pre(R)) = α(∅) = (∅, ∅) = pre#(∅, ∅) = pre#(α(R)).
So let us assume R �= ∅.

By unfolding the definitions, we see that α(pre(R)) = (Tpre(R), Dpre(R))
with
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Tpre(R) = {x | ∃r, r′ ∈ Runs : r · r′ ∈ R ∧ r is transparent for x}
Dpre(R) = {τ | ∃r, r′ ∈ Runs : r · r′ ∈ R ∧ r ! τ}↑ .

In order to evaluate the right hand side, note first that DR is non-empty: there
is a run r ∈ R and any such run satisfies r ! (0, ε, 0); moreover, (0, ε, 0) is �-
maximal and hence contained in DR. Consequently, the second case applies
in the definition of pre# and we have pre#(α(R)) = pre#(TR, DR) = (X, D)
with

D = {(ι, ϕ, κ) ∈ DT | (ι, ϕ, 0) ∈ DR}↑ .

Thus, we have to show Tpre(R) = X and Dpre(R) = D.
Tpre(R) ⊆ X is trivial. In order to see the reverse inclusion, i.e. that Tpre(R)

contains any x ∈ X , choose an arbitrary r ∈ R and observe that the empty
run ε is a prefix of r that is transparent for any variable x.

The following chain of implications shows Dpre(R) � D:

(ι, ϕ, κ) ∈ Dpre(R)

⇒ [Equation above, Lemma 7.5.3(1.)]
∃r, r′ ∈ Runs : r · r′ ∈ R ∧ r ! (ι, ϕ, κ)

iff [Lemma 7.8.2]
∃r ∈ R : r ! (ι, ϕ, 0)

iff [Set comprehension]
(ι, ϕ, 0) ∈ {τ ∈ DT | ∃r ∈ R : r ! τ}

⇒ [Lemma 7.5.2, definition DR]
∃τ ′ ∈ DR : (ι, ϕ, 0) � τ ′

⇒ [See below]
∃τ ∈ D : (ι, ϕ, κ) � τ .

The reasoning for the last step is as follows. The subsumption order � is
concerned only with removing gaps from the dependence sequence ϕ in a
dependence trace but leaves the initial and final transparency information
untouched. Hence, the dependence trace τ ′ ∈ DR with (ι, ϕ, 0) � τ ′ must have
the form τ ′ = (ι, ψ, 0). But then τ := (ι, ψ, κ) ∈ D and (ι, ϕ, κ) � (ι, ψ, κ).

Finally, we show D � Dpre(R):

(ι, ϕ, κ) ∈ D

⇒ [Above equation for D, Lemma 7.5.3(1.)]
(ι, ϕ, 0) ∈ DR

⇒ [Definition of DR, Lemma 7.5.3(1.)]
∃r ∈ R : r ! (ι, ϕ, 0)

iff [Lemma 7.8.2]
∃r, r′ : r · r′ ∈ R ∧ r ! (ι, ϕ, κ)
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iff [Set comprehension]
(ι, ϕ, κ) ∈ {τ ∈ DT | ∃r, r′ : r · r′ ∈ R ∧ r ! τ}

⇒ [Lemma 7.5.2]

∃τ ∈ {τ ∈ DT | ∃r, r′ : r · r′ ∈ R ∧ r ! τ}↑ : (ι, ϕ, κ) � τ

iff [Above equation for Dpre(R)]
∃τ ∈ Dpre(R) : (ι, ϕ, κ) � τ .

This completes the proof. ��

7.9 Post-operator

We define the (abstract) post-operator, post# : AD→ AD, in complete anal-
ogy to the pre-operator as follows:

post#(T, D) =
{

(∅, ∅) , if D = ∅
(X, {(ι, ϕ, κ) ∈ DT | (0, ϕ, κ) ∈ D}) , if D �= ∅ .

By symmetry to the pre-operator we obtain that the post operator is well-
defined and a precise abstraction of the post-operator on non-atomic run
sets.

Theorem 7.9.1 (Abstract post-operator is precise). Suppose R ∈ NR.
Then α(post(R)) = post#(α(R)). ��

7.10 Sequential Composition

The (abstract) sequential composition operator, ;# : AD × AD → AD, which
we write as an infix operator, is defined by

(T, D);#(T ′, D′) = (T ∩ T ′, (D; D′)↑) ,

where

D; D′ = {(ι, ϕ, κ) ∈ D | κ = 1 ⇒→
ϕ∈ T ′} (7.1)

∪{(ι, ϕ, κ) ∈ D′ | ι = 1 ⇒←
ϕ∈ T } (7.2)

∪{(ι, ϕ · ψ, κ) ∈ DTS | (ι, ϕ, 0) ∈ D, (0, ψ, κ) ∈ D′} (7.3)
∪{(ι, ϕ · 〈(x, z)〉 · ψ, κ) ∈ DTS | (7.4)

∃y : (ι, ϕ · 〈(x, y)〉, 1) ∈ D, (1, 〈(y, z)〉 · ψ, κ) ∈ D′} .

Before we explain the intuition underlying this definition we show that ;# is
well-defined.
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Fig. 7.2. Intuition of sequential composition.

Lemma 7.10.1. The abstract sequential composition operator ;# is well-
defined.

Proof. We have to show that (D; D′)↑ ∈ ACS for all D, D′ ∈ ACS, i.e. that
(D; D′)↑ is an �-antichain of short dependence traces.

It is easy to see that D; D′ (and hence its subset D; D′)↑) contains only
short dependence traces: the first two sets contain only dependence traces
from D or D′, which consequently are short, and the constructions in the
third and fourth set are explicitly restricted to contain short dependence
traces. The application of the ↑-operator ensures that (D; D′)↑ ∈ ACS is an
�-antichain. ��
Obviously, a run r = r′ · r′′ composed of two runs r′ and r′′ is transparent
for a variable x if and only if both r′ and r′′ are. Therefore, transparency
information must be intersected in a sequential composition.

Let us explain the intuition underlying the definition of D; D′. Suppose
given a run r = r′ · r′′ which is composed of two runs r′ ∈ D and r′′ ∈ D′

that use distinct virtual variables (virtual(r′) ∩ virtual(r′′) = ∅). Assume that
τ = (ι, ϕ, κ) with ϕ = 〈d1, . . . , dk〉 is a dependence trace of r. Each di in ϕ is
a dependence of a sub-piece ri of r; we can choose the ri as short as possible
(i.e., such that it starts with an assignment that reads the source variable of
di and ends with an assignment to the destination variable of di). There are
four possibilities, how these sub-pieces can be situated in r as illustrated in
Fig. 7.2:

1) all of them can lie in r′;
2) all of them can lie in r′′;
3) there is an i, 1 ≤ i < k, such that r1, . . . , ri lie in r′ and ri+1, . . . , rk lie

in r′′;
4) there is an i such that ri overlaps with the join point of r′ and r′′.

These four cases are handled by the four sets appearing in the definition of
D; D′:
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1) in this case, τ is also a dependence trace of r′. Vice versa, dependence
traces τ ′ = (ι′, ϕ′, κ′) of r′ give rise to dependence traces of r. However,

if κ′ = 1, no statement that kills
→
ϕ′, the destination variable of the last

dependence in ϕ′, is allowed after rk. Therefore, r′ must be transparent

for
→
ϕ′; hence the side condition in set (7.1).

2) this case is symmetric to case 1).
3) in this case, r′ has the dependence trace (ι, 〈d1, . . . , di〉, 0) and r′′ the

dependence trace (0, 〈di+1, . . . , dk〉, κ). Vice versa, dependence traces of
r′ and r′′ of this form give rise to a dependence trace of r.

4) choose variables x, z ∈ X such that di = (x, z). Sub-run ri accomplishes
the transfer from x to z via certain intermediate variables. One of these
intermediate variables, say y, must bridge the joint point between r′ and
r′′ (i.e., it is assigned to in r′, read from in r′′ and not killed in between).
As r and r′ use distinct virtual variables, y must be a program variable:
y ∈ X . Then (s, 〈d1, . . . , di−1, (x, y)〉, 1) is a dependence trace of r′ and
(1, 〈(y, z), di+1, . . . , dk〉, κ) is a dependence trace of r′′. The bit 1 as final
component of τ ′ and first component of τ ′′ is justified, as y is not killed
from the place where it is assigned to in r′ and read in r′′. Similarly,
dependences of r′ and r′′ of the above form give rise to a dependence
trace of r.

It is not hard to see that in all four cases the dependence traces of r′ and/or
r′′ in question are short and �-maximal if τ is and, vice versa, that each
short and �-maximal dependence trace of r can be composed of short and
�-maximal dependence traces of r′ and r′′ in the described way.

Lemma 7.10.2 (Abstract sequential composition is precise).
Suppose R, S ∈ NR. Then α(R ; S) = α(R);#α(S).

Proof. By formalizing the intuition described above. ��

7.11 Interleaving

Transparency information for the interleaving R ⊗ S of two run sets R and
S is easy to obtain from transparency information of the components: a
transparent run for a variable x exists in R⊗S if and only if each component
set contains a transparent run. Therefore, the transparency information in
TR and TS must simply be intersected.

It is far more interesting to consider the dependence traces in DR⊗S as
the two threads modeled by R and S can cooperate in order to exhibit de-
pendences. More specifically, a dependence (u, v) can be composed of com-
plementary dependence sequences of two runs r ∈ R and s ∈ S, e.g., as
illustrated here:
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Deps. of r: u = x1→y1 x2→y2 x3→y4 · · · xk−1→yk−1 xk→yk = v
Deps. of s: y1→x2 y2→x3 · · · yk−1→xk

Of course such a combination of complementary dependence sequences can
also start and/or end with a dependence of s. And, as a border case, one
of the dependence sequences can be empty; the other then just consists of
a single dependence. Before we define the abstract interleaving operator, we
present in the next section the general definition of when two dependence
sequences complement each other to a single dependence and introduce a
relation C that extends this definition to dependence traces.

7.11.1 Complementary Dependence Traces

Let ϕ, ψ ∈ DS be two dependence sequences (one of them can be empty) and
u, v ∈ X . Choose variables such that ϕ = 〈(x1, y1), . . . , (xk, yk)〉, k ≥ 0. We
say that ψ complements ϕ to (u, v) if one of the following cases applies:

1. ϕ �= ε, u =
←
ϕ, v =

→
ϕ, and ψ = 〈(y1, x2), . . . , (yk−1, xk)〉;

2. ϕ �= ε, ψ �= ε, u =
←
ϕ, v =

→
ψ , and ψ = 〈(y1, x2), . . . , (yk−1, xk), (yk, v)〉;

3. ϕ �= ε, ψ �= ε, u =
←
ψ , v =

→
ϕ, and ψ = 〈(u, x1), (y1, x2), . . . , (yk−1, xk)〉; or

4. ψ �= ε, u =
←
ψ, v =

→
ψ, and ψ = 〈(u, x1), (y1, x2), . . . , (yk−1, xk), (yk, v)〉.

Intuitively, ψ complements ϕ to (u, v) if the two of them can alternately
be combined to a gap-free transfer from u to v. The different cases are dis-
tinguished by whether the first read in this gap-free transfer comes from ϕ
(cases 1/2) or ψ (cases 3/4) and whether the last write is in ϕ (cases 1/3) or
ψ (cases 2/4).

Now, consider a dependence trace τ of a run t ∈ R ⊗ S which is an
interleaving of the runs r ∈ R, s ∈ S. Then every single dependence in τ
must be obtained in the above described fashion from pieces of dependence
traces of r and s. We, therefore, generalize this notion of completion to de-
pendence traces as follows. Suppose given dependence traces τ, τ0, τ1, where
τ = (ι, 〈(x1, y1), . . . , (xk, yk)〉, κ), τ0 = (ι0, ϕ, κ0), τ1 = (ι1, ψ, κ1). Then we
say that τ1 complements τ0 to τ , C(τ0, τ1, τ) for short, if there are dependence
sequences ϕ1, . . . , ϕk, ψ1, . . . , ψk such that

1. ϕ = ϕ1 · . . . · ϕk and ψ = ψ1 · . . . · ψk;
2. ψi complements φi to (xi, yi) for i = 1, . . . , k.
3. ι = 1 implies ι0 = 1 and ψ1 complements ϕ1 to (x1, y1) according to

cases 1 and 2, or ι1 = 1 and ψ1 complements ϕ1 according to cases 3 and
4; and

4. κ = 1 implies κ0 = 1 and ψk complements ϕk to (xk, yk) according to
cases 1 and 3, or κ1 = 1 and ψk complements ϕk according to cases 2
and 4.
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Fig. 7.3. Complementary dependence traces.

The typical situation of two dependence traces τ0 and τ1 that complement
each other to a dependence trace τ is illustrated in Fig. 7.3. For clarity we
omit the transparency bits. The dashed vertical lines indicate equality of
variables.

A number of elementary properties of the relation C are collected in the
following lemma.

Lemma 7.11.1 (Basic properties of C). Suppose τ, τ0, τ1 ∈ DT. Then

1. C is symmetric in the first two parameters: C(τ0, τ1, τ) if and only if
C(τ1, τ0, τ).

2. (0, ε, 0) is a ‘neutral element’: C((0, ε, 0), τ, τ).
3. In particular, C((0, ε, 0), (0, ε, 0), (0, ε, 0)).

Proof. Left to the reader. ��

7.11.2 Interleaving Operator

We are now in the position to define the (abstract) interleaving operator,
⊗# : AD× AD→ AD, which we write again as an infix operator:

(T, D)⊗# (T ′, D′) = (T ∩T ′, {τ ′′ ∈ DTS | ∃τ ∈ D, τ ′ ∈ D′ : C(τ, τ ′, τ ′′)}↑) .

By restricting the set construction to short dependence traces and applying
the (·)↑ operator, the interleaving operator is trivially well-defined. The goal
of the remainder of this section is to show that it is a precise abstraction of
the interleaving operator on sets of non-atomic runs.

Theorem 7.11.1 (Abstract interleaving operator is precise).
Suppose R, S ∈ NR. Then α(R ⊗ S) = α(R)⊗# α(S).

The proof is deferred to Section 7.11.5. Before that, we establish a number
of lemmas that capture the main insights underlying the proof.

7.11.3 Soundness Lemmas

The lemmas in this section are concerned with the soundness of the abstract
interleaving composition operator, i.e. they are crucial for the proof that
α(R ⊗ S) � α(R) ⊗# α(S) for any two run sets R, S. The critical point
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here is to guarantee that our definition of the abstract interleaving operator
includes enough dependence traces.

As a first step, we show that each dependence trace of some interleaving
of two runs r, s can also be obtained by combining two dependence traces of
the component runs r and s via the relation C.

Let r, s, t ∈ Runs with virtual(r) ∩ virtual(s) = ∅ and τ ∈ DT.

Lemma 7.11.2. Suppose t ∈ r ⊗ s and t ! τ . Then there are τr, τs ∈ DT
with r ! τr, s ! τs, and C(τr , τs, τ).

Proof. Assume that t is an interleaving of r and s and τ = (ι, 〈d1, . . . , dk〉, κ)
is a dependence trace of t. Each di is a dependence of a certain sub-run ti of
t and each ti is an interleaving of certain sub-runs of r and s.

From ti we can construct dependence traces ϕi and ψi of these sub-runs
of r and s such that ϕi complements ψi to dependence di. This is described
below. Then ϕ1 · . . . · ϕk and ψ1 · . . . · ψk are dependence sequences of r
and s, resp., and we can choose transparency bits ιr, κr, ιs, κs ∈ B such that
τr = (ιr, ϕ1 · . . . · ϕk, κr) and τs = (ιs, ψ1 · . . . · ψk, κs) are dependence traces
of r and s, resp., such that C(τr , τs, τ) holds. Specifically, we choose ιr = ι
if the first assignment instance involved in the mediation of d1 belongs to
r and ιs = ι if it belongs to s, and similarly for the final transparency bits
and the last assignment instance involved in the mediation of dk. All other
transparency bits are chosen 0.

Let us now explain how to construct the dependence sequences ϕi and ψi

mentioned above. Choose program variables x, y such that di = (x, y). Sub-
run ti of t exhibits di via certain assignment instances aj := ej , j = 1, . . . , l.
In particular, al = y. Each of these assignment instances lies either in a sub-
piece of r or a sub-piece of s. Let us consider the case that the first assignment
instance a1 := e1 lies in a sub-piece of r; the case that it lies in a sub-piece
of s is analogous. We can then find indices 0 < j0 < j1 < . . . < jn such that
aj := ej lies in a sub-piece of r if jm < j ≤ jm+1 for an even m ∈ {0, . . . , n−1}
and in a sub-piece of s otherwise. In particular, for any j ∈ {j1, . . . , jn−1}
one of the assignments instances aj := ej and aj+1 := ej+1 lies in a sub-piece
of r and the other one in a sub-piece of s. This implies that aj must be a
program variable, because it appears in ej+1 and virtual(r) ∩ virtual(s) = ∅.
Choose now

ϕi = 〈(x, aj1 ), (aj2 , aj3), . . . , (ajn−2 , ajn−1)〉 ,
ψi = 〈(aj1 , aj2), (aj3 , aj4), . . . , (ajn−1 , y)〉

if n is even and

ϕi = 〈(x, aj1 ), (aj2 , aj3), . . . , (ajn−1 , y)〉 ,
ψi = 〈(aj1 , aj2), (aj3 , aj4), . . . , (ajn−2 , ajn−1)〉

if n is odd. Then ϕi and ψi are dependence sequences of the sub-runs of r
and s that comprise ti and, obviously, ϕi complements ψi to di. ��
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Fig. 7.4. Dependence traces of interleavings are induced by complementary depen-
dence traces of the components.

Example 7.11.1. Fig. 7.4 illustrates the construction in the proof. The run
t is an interleaving of the runs r and s. We can thus decompose r and s
into sub-runs such that t is obtained by alternately shuffling these sub-runs
together; in the example r = r1 · r2 · r3 · r4 · r5, s = s1 · s2 · s3 · s4, and
t = r1 · s1 · r2 · s2 · r3 · s3 · r4 · s4 · r5.

Let us assume that τ = (ι, 〈(a, b), (c, d)〉, κ) is a dependence trace of t.
Then there are sub-runs t1 and t2 of t that exhibit the two dependences (a, b)
and (c, d), e.g., as shown in the figure. These sub-runs overlap in a certain
way with the decompositions of r and s; in the example in the figure, for
instance, t1 overlaps with a postfix of r1, all of s1, r2, s2, and a prefix of
r3. The dependence (a, b) is exhibited via certain intermediate assignments
ai := ei (not shown in the figure); we call these assignments crucial in the
following.

There may be sub-runs of r and/or s that overlap with ti but do not
contain a crucial assignment. Such sub-runs must be transparent for the
variable that transfers the dependence at this moment and can be ignored.
In our example, r2 is such a sub-run and g is the variable that transfers the
dependence while r2 is executed.

Whenever two successive crucial assignments lie in sub-pieces of differ-
ent runs, the dependence must be transfered in a program variable between
these assignments because r and s do not share virtual variables. In the
figure, e.g., e is the variable that transfers the dependence from the last
crucial assignment in r1 to the first crucial assignment in s1 and f trans-
fers it from the last crucial assignment in s1 to the first crucial assignment
in r2. From these variables we can construct dependence traces τr and τs

of r and s such that C(τr , τs, τ) holds. In Fig. 7.4, for instance, we have
τr = (ι, 〈(a, e), (f, b), (h, i), (j, d)〉, κ) and τs = (0, 〈(e, f), (c, h), (i, j)〉, 0). ��

Lemma 7.11.2 ensures that combining dependence traces of component
runs via C is fundamentally rich enough to give us all dependence traces of
potential interleavings. However, in our abstract domain, we do not collect
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Fig. 7.5. Removing gaps in a component dependence trace.

all dependence traces but only the maximal ones. Therefore, we only com-
bine the maximal dependence traces of component runs in the definition of
interleaving, which is the best we can do with the available information. Can
we really obtain all the maximal dependence traces just from the maximal
dependence traces of the components?

The next lemma provides us with a kind of shortening rule that is crucial
for the proof that maximal dependence traces of component run sets suffice
to infer the maximal dependence traces of their interleaving.

Suppose τ0, τ
′
0, τ1, τ ∈ DT.

Lemma 7.11.3. Suppose C(τ0, τ1, τ) and τ0 � τ ′
0. Then there are depen-

dence traces τ ′
1, τ

′ ∈ DT such that τ1 ≤ τ ′
1, τ � τ ′, and C(τ ′

0, τ
′
1, τ

′). By sym-
metry of C (Lemma 7.11.1(1)) an analogous property holds with the roles of
τ0 and τ1 exchanged.

Proof. The proof idea is illustrated in Fig. 7.5. The diagram in a) shows
the typical situation of dependence traces τ0, τ1 and τ with C(τ0, τ1, τ). For
clarity the transparency bits are omitted. The diagram in b) shows a typical
dependence trace τ ′

0 with τ0 � τ ′
0. It is obtained from τ0 by removing all

gaps between the target variable u of a certain dependence d in τ0 and the
destination variable v of a later dependence e. We can remove all the depen-
dences from τ1 that are used to fill some or all of these gaps in C(τ0, τ1, τ).
This results in a dependence trace τ ′

1 with τ1 ≤ τ ′
1 as shown in b). Then the

dependence traces τ ′
0 and τ ′

1 complement each other to a dependence trace
τ ′ with τ ≤ τ ′ as shown. As border cases, we may have τ ′

0 = τ0, if none of
the gaps between d and e is filled in C(τ0, τ1, τ), or τ ′ = τ if d and e are used
in C(τ0, τ1, τ) in the same dependence of τ . But this does not invalidate our
reasoning as � and ≤ are reflexive. ��

By applying this shortening rule iteratively, we obtain the following lemma
that is of direct use in the proof of Theorem 7.11.1.
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Lemma 7.11.4. Suppose τr ∈ {τ | ∃r ∈ R : r ! τ}, τs ∈ {τ | ∃s ∈ S : s !
τ}, and C(τr , τs, τ). Then there are τ ′

r ∈ DR, τ ′
s ∈ DS, and τ ′ ∈ DT with

C(τ ′
r , τ

′
s, τ

′) and τ � τ ′.

Proof. The problem is that τr and τs need not be �-maximal in their re-
spective set. Hence they may not belong to DR and DS , respectively. By
iteratively applying Lemma 7.11.3, however, we can determine dependence
traces τ↑

r and τ↑
s that are �-maximal in these sets (and hence belong to DR

and DS, respectively) as well as a dependence trace τ↑ with C(τ↑
r , τ↑

s , τ↑) and
τ � τ↑:

We start with (τ↑
r , τ↑

s , τ↑) := (τr, τs, τ). This initialization trivially ensures
τ↑
r ∈ {τ | ∃r ∈ R : r ! τ}, τ↑

s ∈ {τ | ∃s ∈ S : s ! τ}, C(τ↑
r , τ↑

s , τ↑), and τ � τ↑,
which is an invariant of the loop we describe in the following.

If τ↑
r is not �-maximal in {τ | ∃r ∈ R : r ! τ}, we can choose a dependence

trace τ ′
r ∈ {τ | ∃r ∈ R : r ! τ} which is strictly larger: τ↑

r � τ ′
r. Then, by

Lemma 7.11.3, there are τ ′
s and τ ′ with τ↑

s ≤ τ ′
s, τ � τ↑ � τ ′, and C(τ ′

r, τ
′
s, τ

′).
By Proposition 7.3.2, τ ′

s ∈ {τ | ∃r ∈ R : r ! τ}, hence the invariant remains
valid. We then set (τ↑

r , τ↑
s , τ↑) := (τ ′

r , τ
′
s, τ

′). We can proceed analogously, if
τ↑
s is not maximal in {τ | ∃s ∈ S : s ! τ}.

This shortening procedure is applied iteratively until both τ↑
r and τ↑

s are
�-maximal in their respective sets. Termination is guaranteed, because in
each step either the dependence sequence in τ↑

r or in τ↑
s becomes shorter

and the dependence sequence in the other dependence trace does not become
longer. ��

7.11.4 Completeness Lemmas

The lemmas in this section are concerned with completeness of the inter-
leaving operator, i.e. they are important for the proof that α(R ⊗ S) �
α(R) ⊗# α(S) for any two non-atomic run sets R, S. They crucially depend
on runs being non-atomic.

A dependence of a non-atomic run r must involve a virtual variable at a
certain stage as assignments that have program variables on both the left- and
the right-hand-side do not occur in non-atomic runs. But when the execution
of r is in such a stage, no parallel thread can disturb propagation of the
dependence because parallel threads do not interfere on virtual variables.
This observation underlies the proof of the following lemma.

Lemma 7.11.5. Suppose r, s are runs with virtual(r) ∩ virtual(s) = ∅, and
x, y ∈ X. If r exhibits (x, y) then there is a run t ∈ r ⊗ s that exhibits (x, y).

Proof. Suppose (x, y) is a dependence of r. This means that r can be written
in the form r = r0 · 〈a1 := e1〉 · r1 · 〈a2 := e2〉 · r2 · . . . · rl−1 · 〈al := el〉 · rl

as in the definition of “r exhibits (x, y)”. Then in particular e1 contains the
variable x. As x is a program variable, this implies by the form of assignments
appearing in runs that a1 must be a virtual variable (cf. the definition of Asg).
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As virtual(r) ∩ virtual(s) = ∅, s must thus be transparent for a1. Hence the
run t ∈ r ⊗ s defined by

t := r0 · 〈a1 := e1〉 · s · r1 · 〈a2 := e2〉 · r2 · . . . · rl−1 · 〈al := el〉 · rl

still exhibits dependence (x, y). ��
Note that this argument crucially depends on the assumption about the

form of assignments in runs that derives from the assumption that assign-
ments execute non-atomically. If assignments execute atomically, the above
lemma is no longer valid.

Example 7.11.2. Consider the parallel execution of the two straight-line pro-
grams π1 = (y := x) and π2 = (x := 0 ; y := 0).

If assignment statements execute atomically, there are just three possible
runs,

1) 〈x := 0, y := 0, y := x〉,
2) 〈x := 0, y := x, y := 0〉, and
3) 〈y := x, x := 0, y := 0〉.

None of these runs exhibits dependence (x, y) because either x is killed before
y := x is executed as in 1) and 2), or y is killed after y := x is executed as in
2) and 3).

If, on the other hand, assignment statements may execute non-atomically,
then the two initialization statements in π2 could well be executed after x is
read but before y is written. This is witnessed by the run

4 〈v := x, x := 0, y := 0, y := v〉,
where v is a virtual variable, in our model of non-atomic execution. In contrast
to the runs 1)-3), run 4) exhibits dependence (x, y). ��

Lemma 7.11.5 provides an intuitive explanation why precise analysis of
parallel programs is simpler if we assume non-atomic execution of assign-
ments. Under this assumption dependences once generated by a thread can-
not be definitely destroyed by its environment. Thus, an analysis that collects
positive information about potential dependences is precise. (In order to do
this in a ¡ compositional fashion it must collect more information, namely
(maximal, short) dependence traces. If we analyze with respect to the as-
sumption that assignments execute atomically, there is a complex interplay
between the way dependences are generated by a thread and the order of re-
initializations performed by its environment as illustrated by the above exam-
ple. Therefore, an analysis that just collects positive information is doomed
to be imprecise.

Lemma 7.11.6. Suppose r0, r1 are runs with virtual(r0)∩virtual(r1) = ∅ and
τ0, τ1, τ are dependence traces with r0 ! τ0, r1 ! τ1, and C(τ0, τ1, τ). Then
there is a run r ∈ r0 ⊗ r1 such that r ! τ .



138 7. Dependence Traces

Proof. For notational convenience, we discuss the case that the dependence
sequence in τ consists of just a single dependence; the generalization to ar-
bitrary dependence sequences is left to the reader. Let τ = (ι, 〈(u, v)〉, κ).
Furthermore, let τ0 = (ι0, φ, κ0) and τ1 = (ι1, ψ, κ1).

Let us assume that case 2 in the definition of C(τ0, τ1, τ) applies; the other
cases are similar. Then we can choose variables u = x1, . . . , xk+1 = v such
that

ϕ = 〈(x1, y1), . . . , (xk, yk)〉 and ψ = 〈(y1, x2), . . . , (yk, xk+1)〉 ,

and it is ι0 = 1 if ι = 1 and κ1 = 1 if κ = 1. As r0 ! τ0 and r1 ! τ1 we can
write r0 and r1 in the form

r0 = t00 · r0
1 · t01 · r0

2 · · · t0k−1 · r0
k · t0k and r1 = t10 · r1

1 · t11 · r1
2 · · · t1k−1 · r1

k · t1k
such that

1) r0
i exhibits (xi, yi) and r1

i exhibits (yi, xi+1) for i = 1, . . . , k;
2) t00 is transparent for u if ι = 1 (and hence ι0 = 1); and
3) t1k is transparent for v if κ = 1 (and hence κ1 = 1).

The run r0
1 · r1

1 · r0
2 · r1

2 · · · r0
k · r1

k clearly exhibits dependence (u, v), but in
order to construct an interleaving of r0 and r1, we must also execute the
intermediate code pieces tji . Fortunately, each of the dependences realized by
some rj

i must involve a virtual variable; and, while the transfer is in such
a stage, code pieces of the other run, r1−j , can safely be executed without
destroying the dependence, due to the disjointness of the virtual variables
used in r0 and r1. Thus, we can execute each code piece t1i at such a stage of
execution of r0

i+1 and, similarly, t0i during such a stage of r1
i . The rest of the

proof pursues this argument more formally.
By Lemma 7.11.5, there are interleavings s0

i ∈ r0
i ⊗ t1i−1 and s1

i ∈ r1
i ⊗

t0i such that, for i = 1, . . . , k, s0
i still exhibits (xi, yi) and s1

i still exhibits
(yi, xi+1). Then the run r := t00 ·s0

1 ·s1
1 ·s0

2 ·s1
2 · · · s0

k ·s1
k ·t1k is an interleaving of r0

and r1 (i.e. r ∈ r1⊗r2). On the other hand, r ! τ because s0
1 ·s1

1 ·s0
2 ·s1

2 · · · s0
k ·s1

k

exhibits dependence (u, v) and items 2) and 3) above give the transparency
properties. ��

Like Lemma 7.11.5, Lemma 7.11.6 fails to hold if assignments execute
atomically as illustrated by the following example.

Example 7.11.3. Consider the two programs π1 = (y := x) and π2 = (x :=
0 ; y := 0 ; z := y) and the three dependence traces τ1 = (1, 〈(x, y)〉, 1), τ2 =
(1, 〈(y, z)〉, 1), and τ = (1, 〈(x, z)〉, 1).

If assignments execute atomically, π1 has only the run r1 = 〈y := x〉 and
π2 has only the run r2 = 〈x := 0, y := 0, z := y〉. Clearly, τ1 is a dependence
trace of r1 and τ2 is a dependence trace of r2, independently of whether
assignments execute atomically or not. Moreover, C(τ1, τ2, τ) holds.
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But only the following four runs are possible interleavings of r1 and r2:

1) 〈x := 0, y := 0, z := y, y := x〉,
2) 〈x := 0, y := 0, y := x, z := y〉,
3) 〈x := 0, y := x, y := 0, z := y〉, and
4) 〈y := x, x := 0, y := 0, z := y〉.

It is not hard to see that τ is not exhibited by any of these runs.
If, on the other hand, assignments do not execute atomically, there are

also runs like

5) 〈v := x, x := 0, y := 0, y := v, u := y, z := u〉,
where u, v are virtual variables, which exhibits dependence trace τ . ��

7.11.5 Proof of Theorem 7.11.1

We can now put the pieces together and prove Theorem 7.11.1. By unfolding
the definitions, we have

α(R ⊗ S) = (TR⊗S , DR⊗S) and
α(R)⊗# α(S) = (TR ∩ TS , D) ,

where D = {τ ∈ DTS | ∃τR ∈ DR, τS ∈ DS : C(τR, τS , τ)}↑. Consequently,
we have to show TR⊗S = TR ∩ TS and DR⊗S = D.

“TR⊗S ⊆ TR ∩ TS”: If x ∈ TR⊗S , then there is a run t ∈ R ⊗ S that is
transparent for x. By definition, t is an interleaving of runs r ∈ R and
s ∈ S. These runs r, s must then also be transparent for x. Thus, x ∈
TR ∩ TS .

“TR⊗S ⊇ TR ∩ TS”: If x ∈ TR ∩ TS , then there are runs r ∈ R and s ∈ S
that are transparent for x. By bounded renaming of virtual variables
these runs can be chosen such that they do not share virtual variables.
Then all interleavings of these two runs are in S⊗R, and all of them are
transparent for x. Thus, x ∈ TR⊗S.

“DR⊗S � D”: In order to show this relationship, assume that we are given
τ ∈ DR⊗S . Then we have, by the definition of DR⊗S and Lemma 7.5.3(1.):

∃t ∈ R⊗ S : t ! τ

iff [Definition R⊗ S]
∃r ∈ R, s ∈ S, t ∈ r ⊗ s : t ! τ

⇒ [Lemma 7.11.2]
∃r ∈ R, s ∈ S, τr, τs ∈ DT : r ! τr ∧ s ! τs ∧ C(τr , τs, τ)

⇒ [Shunting, set comprehension]
∃τr ∈ {τ | ∃r ∈ R : r ! τ}, τs ∈ {τ | ∃s ∈ S : s ! τ} : C(τr , τs, τ) .
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⇒ [Lemma 7.11.4]
∃τr ∈ DR, τs ∈ DS , τ ′ ∈ DT : C(τr, τs, τ

′) ∧ τ � τ ′

iff [Set comprehension, see below]
∃τ ′ ∈ {τ ∈ DTS | ∃τR ∈ DR, τS ∈ DS : C(τR, τS , τ)} : τ � τ ′

⇒ [Definition D, Lemma 7.5.2]
∃τ ′ ∈ D : τ � τ ′ .

In the step marked “see below”, we must prove for “⇒” that τ ′ can be
chosen as a short dependence trace, which is not true for this step in
isolation. But, it is true under the assumption that τ ∈ DR⊗S which
underlies the whole calculation: as a consequence of this assumption τ
is short and this implies that any τ ′ with τ � τ ′ must also be short
(Lemma 7.6.3). A calculation, in which this step is valid in isolation,
requires to furnish each of the preceeding predicates with the conjunct
τ ∈ DR⊗S , which would clutter the calculation.

“DR⊗S � D”: This is shown by the following chain of implications:

τ ∈ D

⇒ [Definition of D, Lemma 7.5.3(1.)]
∃τR ∈ DR, τS ∈ DS : C(τR, τS , τ)

⇒ [Definition DR, DS , Lemma 7.5.3(1.)]
∃r ∈ R, s ∈ S, τR, τS : r ! τR ∧ s ! τS ∧ C(τR, τS , τ)

iff [By bounded renaming of virtual variables in s]
∃r ∈ R, s ∈ S, τR, τS :

r ! τR ∧ s ! τS ∧ C(τR, τS , τ) ∧ virtual(r) ∩ virtual(s) = ∅
⇒ [Lemma 7.11.6, definition R⊗ S]
∃t ∈ R⊗ S : t ! τ

iff [Set comprehension]
τ ∈ {τ ∈ DT | ∃r ∈ R⊗ S : r ! τ}

⇒ [Lemma 7.5.2, definition DR⊗S ]
∃τ ′ ∈ DR⊗S : τ � τ ′ .

This ends the proof of Theorem 7.11.1. ��

7.12 Base Edges

In Chapter 6 we discussed that the atomicity assumptions about assignments
may vary and that this gives rise to different definitions of the non-atomic
run sets [[x := e]] assigned to an assignment statement x := e. Fortunately,
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all reasonable choices result in the same abstraction which is given by the
following definition:

[[x := e]]# = (X \ {x}, {(ι, 〈(y, x)〉, κ) | ι, κ ∈ B, y appears in e}) .

Whatever atomicity assumption we are working with, all runs in [[x := e]]
will contain certain auxiliary assignments to virtual variables and a single
assignment to x. No program variable except x will ever be the target of an
assignment in a run in [[x := e]]. Hence, all non-atomic runs are transparent
just for the program variables in X \ {x}, which explains the adequacy of the
first component of [[x := e]]#. Moreover, it implies that no dependence trace of
a non-atomic run can embody a dependence sequence that is longer than one
or has a destination variable different from x. Each reasonable non-atomic
run induces the same dependences between program variables as x := e,
hence the induced dependences are (y, x) where y is a variable appearing in
e. Moreover, no reasonable run kills a variable in e before it reads it or kills x
after it has written it, which implies that the transparency bits can be chosen
arbitrarily.

All dependence traces included in the second component of [[x := e]]# are
trivially short and �-maximal. Thus, [[x := e]]# is well-defined..

Proposition 7.12.1. α([[x := e]]) = [[x := e]]#. ��
Statement skip has just the single run ε, which is obviously transparent

for all variables and has just the dependence trace (0, ε, 0). Hence, we define
[[skip]]# = (X, {(0, ε, 0)}).
Proposition 7.12.2. α([[skip]]) = [[skip]]#. ��

We define the abstract interpretation of a base edge e of the underlying
flow graph as the interpretation of the statement A(e) associated with e:
[[e]]# = [[A(e)]]#.

Proposition 7.12.3. α([[e]]) = [[e]]# for all base edges e. ��

7.13 Running Time

In this section we show that we can compute the abstract operations pre#,
post#, ;#, and ⊗# in time 2p(|X|), where p(x) is a polynomial. We empha-
size that we do neither intend to develop efficient implementations of the
operations nor to present a very precise analysis. The results of this section
will mainly be used in order to establish the qualitative complexity state-
ment that the algorithms developed later run in exponential time. We are,
however, interested in uncovering the parameter of exponential growth: it is
the number of program variables |X | rather than the size of the parallel flow
graph.
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Let us investigate the most expensive operation, interleaving, to some
detail. First of all, we recall its definition from Section 7.11:

(T, D)⊗# (T ′, D′) = (T ∩ T ′, D′′↑) ,

where D′′ = {τ ′′ ∈ DTS | ∃τ ∈ D, τ ′ ∈ D′ : C(τ, τ ′, τ ′′)}. The sets T and T ′

are subsets of X , the set of program variables. Computing the intersection
of T and T ′ is cheap: if we represent these sets as bit-strings (of length |X |),
we can clearly calculate the intersection in time O(|X |) by looking through
the bit-strings for T and T ′ once.

D and D′ are antichains of short dependence traces, hence D, D′ ⊆
DTS. By Lemma 7.6.1, the cardinality of DTS and hence of D and D′ is
O(|X |2|X|+2). This clearly is O(2p0(|X|)) for some polynomial p0(x). We can
hence consider at most O(22p0(|X|)) pairs of dependence traces τ and τ ′ when
computing D′′. For each fixed pair of dependence traces τ, τ ′ all dependence
traces τ ′′ with C(τ, τ ′, τ ′′) can be determined in time O(2p1(|X|)) for some
polynomial p1(x). We leave it to the reader to invent some procedure for
this task that realizes this rather rough bound. Even a very naive procedure
that lists all short dependence traces τ ′′ and then checks for each listed de-
pendence trace whether C(τ, τ ′, τ ′′) holds will do. The observation that τ ,
τ ′, and τ ′′ are short, and hence the length of their dependence sequences is
bounded by |X | + 1 is helpful. As a consequence, we can calculate D′′ in
time O(22p0(|X|)+p1(|X|)). Again O(2p0(|X|)) is an asymptotic bound for the
size of D′′ because D′′ ⊆ DTS. It is, therefore, not hard to see that D′′↑, the
second component of (T, D) ⊗# (T ′, D′), can be computed from D′′ in time
O(2p2(|X|)) for some polynomial p2(x). Hence the overall cost of computing
(T, D)⊗# (T ′, D′) is O(2p(|X|)) for some polynomial p(x).

By similar considerations we can show that the other operations can be
computed in time O(2p(|X|)) too.

Lemma 7.13.1. The operations pre#, post#, ;#, and ⊗# can be computed
in time O(2p(|X|)) for some polynomial p(x). ��

7.14 Discussion

In this chapter, we have defined an abstraction of sets of non-atomic runs from
which the dependences exhibited by the abstracted run sets can be read off.
Specifically, run sets are abstracted to antichains of short dependence traces
that capture the potential to exhibit dependences in cooperation with a par-
allel environment. The abstraction also records the set of program variables
for which a transparent run exists in the abstracted run set. This informa-
tion is needed in order to propagate the transparency bits of the dependence
traces properly in sequential contexts.

We have defined abstract interpretations of the operations and constants
used in the constraint systems of Chapter 5.5 and have shown that they
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precisely abstract the corresponding operations on sets of non-atomic runs.
Therefore, the least solution of the constraint systems of Section 5.5 over the
resulting abstract lattice (AD,�) consists of the precise abstractions of the
run sets characterized by these constraint systems. As the lattice (AD,�) is
finite, it can be computed effectively by fixpoint iteration. We can use this
least solution in order to effectively determine the dependences exhibited by
the characterized run sets. This allows us, in particular, to determine the de-
pendences exhibited by bridging runs in procedural parallel flow graphs. This
information can in turn be used to detect all copy constants and eliminate
faint code completely, which is explained in detail in the next chapter.

In summary, the dependence traces abstraction provides us with a means
to perform precise interprocedural dependence analysis in parallel programs.



8. Detecting Copy Constants and Eliminating
Faint Code

In this chapter we show that we can detect copy constants and eliminate faint
code in parallel flow graphs completely—relative to the non-atomic semantics
of Chapter 6. The basic idea is to evaluate the constraint system for bridging
runs from Chapter 5 over the complete lattice (AD,�) from the previous
chapter and to exploit this information.

The least solution of a constraint system over some domain corresponds
in a straightforward way to the least fixpoint of a function on this domain
derived from the constraints. We have seen that the abstract counterparts
of the operators and constants appearing in the constraint systems in Chap-
ter 5 precisely abstract the corresponding operators on non-atomic run sets.
Moreover, the abstraction mapping α : NR → AD is universally disjunctive
(Proposition 7.7.2). As commonly known in the area of abstract interpreta-
tion [14, 15], this implies that the least solution of the constraint systems over
domain AD consists just of the abstractions of the least solution over domain
NR. More formally, the facts recalled above ensure that the premises of the
Transfer Lemma (Lemma 3.3.1, Page 39) hold for the functions f and g de-
rived from the concrete and abstract interpretation of the constraint systems
over non-atomic runs and over AD, respectively, and the transfer function
γ that component-wise maps the concrete interpretation x of each variable
X of the constraint system to its abstraction α(x). As AD is finite, we can
compute the least solution of the constraint system for (non-atomic) bridg-
ing runs over lattice AD effectively by fixpoint iteration. From the computed
values we can read off in particular all the dependences of the bridging runs:
if α(R) = (T, D) is the precise abstraction of a set R of (non-atomic) runs
then (x, y) is a dependence of a run in R if and only if (1, 〈(x, y)〉, 1) ∈ D
(Proposition 7.2.1).

Based on this information we can detect copy constants and eliminate
faint code. In this chapter we develop corresponding algorithms with an
exponential worst case running time. (More precise statements about the
dependence of their running time from the different input parameters are
provided by Theorem 8.3.1.) Indeed the point here is not to develop effi-
cient algorithms—we will see in the next chapter that all these problems are
intractable already for loop-free parallel programs—the point is that these
problems can be solved effectively at all. This comes as a surprise, because the
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Algorithm 8.1.

Input: A parallel flow graph as defined in Chapter 5, a program point v ∈ N and
a program variable y ∈ X.

Output: “yes” if y is a copy constant at v; “no” otherwise.
Method:

1) Compute—by standard fixpoint iteration—the least solution over domain
(AD,�) of the constraint system for bridging runs to program point v;
this gives us a value B#

v [u] for each program point u; as a by-product this

computation determines R#[v].
2) Set I [w] := {x | (1, 〈(x, y)〉, 1) ∈ B#

v [w].2} for each program point w ∈ N .
3) Set flag := false and val := unset.
4) If y ∈ R#[v].1 or if there is x ∈ X with (1, 〈(x, y)〉, 1) ∈ R#[v].2 then

flag := true.
5) For all base edges e = (u, w) annotated by an assignment statement x := e

with x ∈ I [w]:
5.1) If e is a composite expression then flag := true;
5.2) If e is a constant expression then

if val = unset then val := e else if val �= e then flag := true.
6) If flag then output “no” else output “yes”.

Fig. 8.1. An algorithm that detects copy constants in parallel programs.

corresponding problems are uncomputable, if we assume atomic execution of
assignments (Chapter 4).

Without further ado, we present, in the remainder of this chapter, the
algorithms for detection of copy constants (Section 8.1) and faint-code elim-
ination (Section 8.2). While we do not perform formal correctness proofs for
these algorithms, we argue (hopefully convincingly) that the presented algo-
rithms solve the respective problems. In our opinion a more formal argumen-
tation would obscure rather than clarify matters here. After the presentation
of the algorithms, we analyze their asymptotic running time in Section 8.3
and finish the chapter with some concluding remarks. Throughout this chap-
ter we assume that execution of base statements is non-atomic.

8.1 Copy-Constant Detection

A variable x is a copy-constant at a program point u if it gets assigned the
same value on all runs reaching u either through a constant assignment (like in
〈x := 42〉) or a constant assignment followed by copying assignments (like in
〈z := 42, y := z, x := y〉). Of course the runs may contain other assignments
also that do not influence the final value of x (like in 〈x := 42, y := a + b〉).
Thus, in copy constant detection only assignments of the simple form x := k,
where k is a constant or variable, are interpreted, all other forms of assign-
ments (e.g. x := y + 1) are (conservatively) assumed to make x non-constant
[83].
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Algorithm 8.1 in Fig. 8.1 reads a parallel flow graph, a program point
v ∈ N , and a program variable y ∈ X and decides whether y is a copy
constant at v or not. For this purpose it first computes (in Steps 1 and 2) for
each program point w the set

I[w] = {x | eMain =⇒ cw
r=⇒ cv,Atw(cw),Atv(cv), r̂ exhibits dep. (x, y)} .

Intuitively, I[w] is the set of variables that can influence the value of y at
v when some computation is at w. Clearly, in I[w] dependences of bridging
runs from w to v are considered. By solving the constraint system for bridg-
ing runs from Section 5 over the domain (AD,�) (Step 1), we can compute
the dependence traces of bridging runs; they are given by the second com-
ponent of the value B#

v [w] that is computed. From the dependence traces we
can read off the dependences by Proposition 7.2.1 and hence determine I[w]
(Step 2). The fixpoint computation in Step 1 determines as a by-product the
abstraction R#[v] of the runs reaching v because the constraint system for
bridging runs embodies the one for reaching runs.

The rest of the algorithm is based on the following observation: variable
y is not a copy constant at v if and only if one of the following is true:

a) there is a variable x the initial value of which can influence y at v;
b) there is a base edge e = (u, w) annotated by an assignment x := e with

a composite expression e on the right hand side such that x’s value at w
can influence y’s value at v;

c) there are two distinct base edges e = (u, w) and e′ = (u′, w′) each of them
annotated by a constant assignment x := c and x′ := c′, respectively, such
that both x at w and x′ at w′ can influence y at v and c �= c′.

In Step 3-6 we check whether one of these conditions is true. We use a Boolean
variable flag that is initialized to false and is set to true once we encounter a
reason for y not being a copy constant at v. Step 4 tests whether condition
a) is true: it sets flag if the initial value of y can flow to v (y ∈ R#[v].1)
or if the initial value of some variable x can influence y at v via a chain of
assignments ((1, 〈(x, y)〉, 1) ∈ R#[v].2). Step 5 is concerned with conditions
b) and c). Each base edge is examined in turn. Step 5.1 tests whether b)
holds. In order to check c), we memorize in a variable val the value of the
constant assignment that can influence y at w encountered first. In order to
check c) we simply compare the value of constant assignments encountered
later with the value memorized in val . Variable val is initialized with a special
value unset that indicates that we have not seen a constant assignment so far.
Finally, Step 6 outputs the answer.

Of course we could stop the algorithm immediately, once the flag is set to
true. Moreover, we can output the value stored in val as additional informa-
tion, if we have identified y as a copy constant at v. It is the value guaranteed
for y at v. It may happen that val has still the value unset; this indicates that
v is an unreachable program point.
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Algorithm 8.2.

Input: A parallel flow graph as defined in Chapter 5; a mapping R : N → 2X that
associates each program point u with the set of variables relevant at u.

Output: An updated edge annotation Anew of the parallel flow graph in which faint
code is eliminated.

Method:
1) Initialize the new annotation of flow graph edges: Anew := A.
2) For each base edge e ∈ Base: Anew[e] := skip.
3) For each v ∈ N with R(v) �= ∅:

3.1) Compute—by standard fixpoint iteration—the least solution over do-
main (AD,�) of the constraint system for bridging runs to program

point v; this gives us a value B#
v [u] for each program point u.

3.2) Set I [w] := {x | ∃y ∈ R(v) : (1, 〈(x, y)〉, 1) ∈ B#
v [u].2} for each pro-

gram point w ∈ N .
3.3) For each base edge e = ( , w) ∈ Base with A[e] = (x := t):

if x ∈ I [w] then Anew[e] := (x := t).
4) Output the new edge annotation Anew.

Fig. 8.2. An algorithm that eliminates faint code in parallel programs.

We conclude:

Theorem 8.1.1. Algorithm 8.1 solves the interprocedural copy constant de-
tection problem in parallel flow graphs relative to non-atomic interpretation
of base statements. ��

8.2 Faint-Code Elimination

A variable x is live at a program point p if there is a run from p to the end
of the program in which x is used before it is overwritten. By referring to
[25], Horwitz et. al. [32] define a variable x as truly live at a program point
p if there is a run from p to the end of the program on which x is used in a
truly live context before being defined, where a truly live context means: in
a predicate, or in a call to a library routine, or in an expression whose value
is assigned to a truly live variable. True liveness can be seen as a refinement
of the ordinary liveness property. We call a use of a variable x in a predicate
or call to a library routine a relevant use of x.

Assignments to variables that are not truly live at the program point just
after the assignment are called faint. Intuitively, faint assignments can not
influence any predicate in the program or call of a library routine. Thus, they
cannot influence the observable behavior of the program (except of producing
run-time errors) and may safely be eliminated from the program. This is
called faint code elimination.

Faint code elimination is a stronger form of the classic transformation of
dead-code elimination [56]. Indeed, any assignment that is dead is also faint
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y > 0 y := y − 1

y ≤ 0 x := 0

x := x + 1
Fig. 8.3. An assignment that is faint but not dead.

but not vice versa. The paradigmatic example is shown in Fig. 8.3. The value
computed by x := x + 1 in the loop is immediately overwritten after the
loop and thus never used in a relevant context. Hence x := x + 1 is faint.
However, it is not dead because x is potentially (non-relevantly) used by the
same statement in the next iteration of the loop. Thus, faint code elimination
in general can eliminate more code from a program.

Faint code elimination is based on information about the relevant uses
of variables. Typically, this information is derived from the library calls and
the conditions in the program. As our view of a program, a parallel flow
graph, is an abstraction of the actual program in which library calls as well
as conditions are invisible, we assume that we are given this information
explicitly in the form of a mapping R : N → 2X ; for each program point
u ∈ N , R(u) is the set of variables directly relevant at u.

Example 8.2.1. In a given program we might find a printf statement, e.g.,

printf("x+y=%d", x+y);

In the abstract flow graph view of the program this statement gives rise to a
skip edge e = (u, v). Then both x and y are relevant at u, hence R(u) = {x, y}.

Similarly, we might find a branching statement, e.g.,

if (z > x*y) then {...} else {...}

In the abstract flow graph view of the program this if-statement gives rise to
two skip-edges (u, v) and (u, w); u is the start node for the flow graph for the
whole if-statement; at v the flow graph for the then part and at w the flow
graph for the else part is found. In this case, we have R(u) = {x, y, z}. ��

Algorithm 8.2 in Fig. 8.2 reads a parallel flow graph and a mapping R :
N → 2X as described above. Based on this information it calculates an
updated version of the edge annotation mapping of the given flow graph in
which faint code is eliminated, i.e., faint instances of base statements are
replaced by skip.

First the new edge annotation mapping is initialized by the original edge
annotation (Step 1) and all annotations of base edges are removed, i.e. re-
placed by skip (Step 2). The rest of the algorithm restores the original edge
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annotation for the non-faint base edges. The algorithm is based on the simple
idea that an instance of a base statement is not faint if and only if it can
influence a relevant value.

We explore all program points v at which at least one variable is relevant
and restore the base edges that perform a computation that can influence
a variable y that is relevant at v (Step 3). For this purpose we calculate in
Steps 3.1 and 3.2 for all program points w the following set I[w]:

{x | eMain =⇒ cw
r=⇒ cv,Atw(cw),Atv(cv), ∃y ∈ R(v) : r̂ exhibits (x, y)} .

Intuitively, I[w] contains the variables that can influence the value of a rel-
evant variable y at v when some computation is at w. The computation is
analogous to the one of the similar set I[w] in Algorithm 8.1; therefore, we
omit a detailed explanation. Step 3.3 restores the annotation of those base
edges that assign to a variable that can influence a relevant variable at v from
the target node of the base edge. Finally, Step 4 outputs the computed new
edge annotation mapping.

We conclude:

Theorem 8.2.1. Algorithm 8.2 solves the interprocedural faint code elimi-
nation problem in parallel flow graphs relative to non-atomic interpretation
of base statements. ��

8.3 Running Time

In this section we analyze the asymptotic running time of the algorithms
from the previous sections. Specifically, we show that the algorithms run in
time exponential in the number of program variables, |X |, and polynomial in
the size of the parallel flow graph. The latter is measured by the parameters
|N |, the number of program points, |E|, the number of edges, and |Proc|, the
number of procedures.

In both algorithms the bulk of the work is done during the least fixpoint
computation(s) for the constraint system(s) for bridging runs over the domain
(AD,�). Let us, first of all, determine an asymptotic bound for the complexity
of such a fixpoint computation. As we are heading for a rough bound only,
we assume that the least fixpoint is computed naively by standard fixpoint
iteration: starting from an assignment of the bottom value to each variable
appearing in the constraint system we iteratively determine a new assignment
to the variables by re-evaluating all constraints until stabilization. Of course
the asymptotic complexity of this naive fixpoint algorithm is bounded by the
product of the maximal number of iterations and the maximal cost of a single
step.

In each iteration except of the last one, at least one constraint variable
must change its value. As values only increase during fixpoint iteration, each
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constraint variable can change its value at most O(|X2|X|+3) times, because
O(|X |2|X|+3) is a bound for the height of AD by Lemma 7.7.1. Moreover, it
is a simple counting exercise to show that the complete constraint system for
bridging runs (it comprises the constraint systems for same-level runs, inverse
same-level runs, reaching runs, etc.) has O(|Proc| · |N |) constraint variables.1

Thus, we can have at most O(|Proc| · |N | · |X |2|X|+3) iterations. This clearly
is O(|Proc| · |N | · 2p0(|X|)) for some polynomial p0(x) in x.

Let us now bound the costs of a single iteration. In each iteration we must
reevaluate all constraints. It is again a simple counting exercise to show that
the complete constraint system for bridging runs has O(|N |·|E|) constraints.2

From Lemma 7.13.1 we know that all operations can be computed in time
O(2p1(|X|)) for some polynomial p1(x). As the number of operations in each
single constraint is bounded, the cost of a single iteration is O(|N | · |E| ·
2p1(|X|)).

Summarizing:

Lemma 8.3.1. The constraint system for bridging runs can be evaluated
over domain (AD,�) in time O(|Proc| · |N |2 · |E| · 2p(|X|)), where p(x) is
a polynomial. ��

Let us now turn attention to the algorithms. Clearly, in the copy-constant
detection algorithm, Algorithm 8.1, the bulk of the work is done in Step 1
such that the time taken for Step 1 majorizes the time taken for the other
steps. Hence this algorithm runs in time O(|Proc| · |N |2 · |E| · 2p(|X|)) by
Lemma 8.3.1.

In the faint-code elimination algorithm, Algorithm 8.2, the work per-
formed in Step 3.1 majorizes the work done in the other steps. Step 3.1
is executed at most |N | times. Consequently, Algorithm 8.2 runs in time
O(|Proc| · |N |3 · |E| · 2p(|X|)).

Clearly, only those program variables are of interest in the algorithms
that appear in the parallel flow graph. We can thus assume without loss of
generality, that all program variables in X appear in the parallel flow graph.
As the latter constitutes part of the input to all algorithm, the input size
cannot be smaller than the size of X . Obviously, the same holds for Proc,
N , and E such that the size of the input clearly bounds all the parameters
appearing in above estimations. Hence all algorithms run in time exponential
in the size of the input.

Theorem 8.3.1. Algorithms 8.1 and 8.2 run in exponential time. More pre-
cisely, Algorithm 8.1 runs in time O(|Proc| · |N |2 · |E| · 2p(|X|)) and Algo-
rithm 8.2 in time O(|Proc| · |N |3 · |E| · 2p(|X|)). ��

1 This asymptotic bound holds in the special case where ASS1 and ASS2 are true
as well as in the general case.

2 Again this asymptotic bound holds for both the special and the general case.
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Corollary 8.3.1. Relative to non-atomic interpretation of base statements,
the following two problems can be solved interprocedurally in parallel flow
graphs in exponential time: (1) copy-constant detection and (2) faint-code
elimination. ��

8.4 Conclusion

We have shown in this chapter that we can detect copy constants and elim-
inate faint code in parallel flow graphs in exponential time, if we do not
assume that base statements execute atomically. This should be contrasted to
the result that all these problems are undecidable if assignment statements
are assumed to execute atomically (Chapter 4). So, the (unrealistic) idealiza-
tion from program verification “atomic execution of assignment statements”
that presumably simplifies matters actually increases the difficulty of these
problems from the point of view of program analysis: amazingly these prob-
lems become more tractable if we adopt a less idealized, more realistic view
of execution.

These results raise the question whether there are also efficient algorithms
for these problems. The answer to this question is ‘no’, unless P=NP, as we
show in the next chapter.
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In the previous chapter, we have seen that we can detect all copy constants
and eliminate faint code completely in parallel programs, if we abandon the
assumption that base statements execute atomically. The presented algo-
rithms run in exponential time, which raises the question whether there are
also efficient algorithms for these problems. In this chapter we show that the
answer is ‘no’, unless P=NP. In the conclusions of this monographs, Chap-
ter 10, we sketch possible remedies and discuss directions of future research
that may lead to algorithms of practical interest.

The hardness proofs from Chapter 4 rely on re-initialization of variables
in order to ensure that runs which do not correspond to behavior to be simu-
lated do not contribute to propagation. The example in Section 6.2 indicates
that this technique does not work, if the assumption of atomic execution of
base statements is abandoned. Indeed, the above analysis problems become
decidable, which implies that the un-decidability proofs cannot be valid any
more.

In Section 9.1 we exhibit a co-NP-hardness proof by means of a reduction
from the well-known SAT-problem [12, 72] that applies to both flow analysis
problems. This reduction was first presented in [58] where atomic execution
of base statement has been assumed, but it remains valid if this assumption
is abandoned [59]. Unlike the reductions in Chapter 4, it only relies on active
propagation along copying assignments but not on re-initialization.

The hardness proof constructs loop-free programs and it is easy to see
that the co-NP lower bound is indeed sharp for loop-free programs. We have
not yet been able to fully characterize the complexity for the other classes:
the general intraprocedural problem and the interprocedural problem. Up
to now we have the EXPTIME upper bound through the algorithms from
Chapter 8 and the NP lower bound through the SAT reduction from Sec-
tion 9.1. A natural idea for an NP-easiness proof would be to show that
non-constancy and non-faintness is always witnessed by runs of polynomial
length. We show in Section 9.2 that this idea does not work. Specifically, we
exhibit a family of programs in which the length of the shortest witnessing
runs is exponential in the program size. This justifies the conjecture that the
general intraprocedural problem does not belong to NP, i.e., cannot be solved
by a non-deterministic algorithm that runs in polynomial time.
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For ease of presentation we represent parallel programs in this chapter,
like in Chapter 4, by syntactic programs rather than flow graphs.

9.1 The SAT-reduction

We now describe the SAT reduction. An instance of SAT is a conjunction
c1 ∧ . . . ∧ ck of clauses c1, . . . , ck. Each clause is a disjunction of literals; a
literal l is either a variable x or a negated variable x, where x ranges over
some set of variables X . We write X = {x1, . . . , xn} for the set of negated
variables. It is straightforward to define when a truth assignment T : X → B,
where B = {tt, ff} is the set of truth values, satisfies c1 ∧ . . . ∧ ck. The SAT
problem asks us to decide for each instance c1 ∧ . . . ∧ ck whether there is a
satisfying truth assignment or not.

From a given SAT instance c1 ∧ . . . ∧ ck with k clauses over n variables
X = {x1, . . . , xn} we construct a loop-free parallel program. In the program
we use k +1 variables z0, z1, . . . , zk. Intuitively, validity of clause ci is related
to propagation from zi−1 to zi.

For each literal l ∈ X ∪ X we define a statement πl that consists of a
sequential composition of assignments of the form zi := zi−1 in increasing
order of i. The assignment zi := zi−1 is in πl if and only if the literal l makes
clause i true. Formally, πl = πk

l , where

π0
l

def= skip

πi
l

def=
{

πi−1
l ; zi := zi−1 , if clause ci contains l

πi−1
l , if clause ci does not contain l

for i = 1, . . . , k. Now, consider the following program π:

procedure Main ;
z0 := 1 ; z1 := 0 ; . . . ; zk := 0 ;
[(πx1 � πx1) ‖ · · · ‖ (πxn � πxn

)] ;
(zk := 0 � skip) ;
write(zk)
end

Clearly, π can be constructed from the given SAT instance c1 ∧ . . . ∧ ck in
polynomial time or logarithmic space.

It is not hard to see that the value 1 from the initialization of z0 can be
propagated to the final write statement if and only if the given SAT instance
is satisfiable:

“If”: On the one hand, we can construct from a satisfying truth assignment
T : X → B a run that propagates z0’s initialization to the write-statement. In
each parallel component πxi � πxi we choose the left branch πxi if T (xi) = tt
and the right branch πxi

otherwise. As T is a satisfying truth assignment,
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write(z3)

z1 := z0

z2 := z1

z3 := z2

z1 := z0 z1 := z0

z2 := z1

z3 := z2

z2 := z1

fork

join

z0 := 1

z1 := 0, z2 := 0, z3 := 0

z3 := 0

Fig. 9.1. The flow graph for (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2).

there will be, for any i ∈ {1, . . . , k}, at least one assignment zi := zi−1 in one
of the chosen branches. We interleave the branches now in such a way that
the assignment(s) to z1 are executed first, followed by the assignment(s) to
z2 etc. This results in a propagating run.

“Only if”: On the other hand, a run can propagate the initialization value of
z0 to the write-statement only via copying from z0 to z1, from z1 to z2 etc.,
because all assignments have the form zi := zi−1. Such a run must contain
an assignment zi := zi−1 for all i = 1, . . . , k. From the way in which the
non-deterministic choices are resolved in such a run we can easily construct
a satisfying truth assignment.

Note that both directions hold independently from the atomicity assump-
tion for assignment statements.

Example 9.1.1. Fig. 9.1 shows an example clause and program for illustra-
tion. Assignments to different variables are shown on different levels. Intu-
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itively a satisfying truth assignment corresponds to a way of resolving the
non-deterministic choices in the three threads such that at each level at least
one assignment is present in one of the chosen branches. This is the case if
and only if the value 1 from z0’s initialization may propagate to the write
instruction. ��
It is not hard to infer from this propagation property that the given SAT
instance is satisfiable if and only if any of the following two conditions holds:

1. z0 := 1 is not a faint assignment.
2. zk is not a copy constant at the write statement.

The second point deserves additional explanation. Observe first that zk can
hold only 0 or 1 at the write-statement because all variables are initialized
by 0 or 1 and the other assignments only copy these values. Clearly, due to
the non-deterministic choice just before the write-statement, zk may hold 0
finally. Thus, zk is a constant at the write-statement if and only if it cannot
hold 1 there. The latter holds if and only if the initialization value of z0

cannot be propagated.
The program constructed in the above reduction is loop-free and does not

employ procedures. Therefore, the reduction already applies to the intrapro-
cedural problems for loop-free programs. It is easy to see that the problems
can also be solved in non-deterministic polynomial time for loop-free pro-
grams: a non-deterministic algorithms may guess two runs that witnesses
non-constancy or a single run that witnesses non-faintness, respectively. Each
of these runs can visit any program point at most once because the program
is loop-free. Hence it can be guessed even in time linear in the program size.

These considerations prove:

Theorem 9.1.1. Independently of the atomicity assumption for base state-
ments, detecting copy constants and detecting faint code in loop-free parallel
programs are co-NP-complete problems. ��
Corollary 9.1.1. Independently of the atomicity assumption, detecting copy
constants and detecting faint code are co-NP-hard problems in arbitrary par-
allel programs. ��

9.2 Towards Stronger Lower Bounds

A natural question is whether the lower bound provided by Corollary 9.1.1 for
the three flow analysis problems, NP-hardness, is sharp, i.e., whether there
are non-deterministic algorithms that run in polynomial time and solve the
general intraprocedural (or even interprocedural) version of one (or both) of
these problems. While we have not yet been able to settle this complexity
question, we have achieved some progress towards an answer.
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A natural approach for showing NP-easiness would be to exhibit a proof
that shortest propagating runs are always of a length polynomial in the pro-
gram size. This would guarantee that non-deterministic algorithms that guess
runs witnessing non-constancy or non-faintness would run in polynomial time.

At first glance this approach seems promising, at least for the intrapro-
cedural problem which has a fixed process architecture. One is tempted to
believe that each assignment instance x := e in the program can be used at
most once for propagation in a shortest propagating run: if it is used twice
in a propagating run r it seems possible to shorten this run. The intuition is
that the thread T that contains this assignment instance x := e could store
the value to be propagated in a virtual variable v when x := e is reached the
first time in r; then it could wait until the environment has evolved to its
state when x := e is reached the second time in r. As virtual variables are
private to P the evolution of the environment cannot affect the stored value.
This reasoning seems similar to the intuition underlying Lemma 7.11.5 that
is crucial for the completeness of the abstract interleaving operator ⊗#.

This intuition, however, is wrong as we show in Section 9.2.1. Specifically,
we present an example program in which any propagating run must necessar-
ily use a certain instance of an assignment twice. In Section 9.2.2 we exploit
the construction of this example to exhibit a family of programs in which the
length of shortest propagating runs grows exponentially with the program
size. This proves that a non-deterministic algorithms that guesses witness-
ing runs is doomed to run in time exponential in the input size. While this
does not rule out the possibility that small certificates other than witnessing
runs exist, it justifies the conjecture that the two flow analysis problems that
accompany us through this monograph probably do not belong to the class
NP but that their complexity is higher. It is an open problem, whether the
technique of these examples can be used to show better lower bounds than
NP-hardness, e.g., PSPACE-hardness.

What is the error in the argument sketched above? It is that the thread T
can prevent the environment from certain evolutions by waiting after it has
stored the value to virtual variable v. For constructing programs in which this
happens (like the ones shown in the remainder of this section), we can exploit
the causality inherent in sequential and parallel composition and looping.
Most importantly, we can exploit that the parallel composition operation
synchronizes termination of the component threads.

9.2.1 Assignment Statements That Propagate Twice

Recall that a run r is said to exhibit dependence (x, y), r ! (x, y) for short,
if there are variables a0, . . . , al, l > 0, expressions e1, . . . , el, and (sub-) runs
r0, . . . , rl such that

1. a0 = x, al = y;
2. ei contains ai−1 for i = 1, . . . , l;
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3. r = r0 · 〈a1 := e1〉 · r1 · 〈a2 := e2〉 · r2 · . . . · 〈al := el〉 · rl; and
4. ri is transparent for ai for i = 0, . . . , l.

If this is the case, we say that the run r propagates from x to y via the
assignments ai := ei. When r is a run of a program π, the assignments with
a program variable on their left hand side correspond to certain assignment
statements in π. Then we say that the run propagates via these assignment
statements.

We now present a program π that can exhibit the dependence (a, c), but
in which any run that does so must use a certain assignment instance twice.
Consider the following program π:

loop




x := b ;
c := y ;
x := a ;
b := y ;
x := 0


 ‖

(
y := x ;
y := 0

)
end .

Program π can exhibit the dependence (a, c) even when assignments execute
atomically (and hence also when they execute non-atomically): by iterating
the loop twice and interleaving the two components of the parallel processes
appropriately, we see that it has the run

1. Iteration: x := b, c := y,x := a,y := x,b := y, x := 0, y := 0,
2. Iteration: x := b,y := x, c := y, x := a, b := y, x := 0, y := 0

This run exhibits the dependence (a, c) via the assignments printed in bold
face. The interesting point of this example is that—even when we assume
non-atomic execution of assignments—there is no run that exhibits this de-
pendence without copying via the assignment y := x in the second parallel
component twice. In order to see this, consider the following: as variable a is
read only by the assignment x := a, a propagating run must use this assign-
ment for propagation in some iteration of the loop, say in the k’th iteration.
Before this iteration of the loop ends, x must be further propagated, because
otherwise propagation is prohibited by the execution of x := 0. This can
only happen in the second thread by means of y := x. Again, in order to
successfully proceed with the propagation, y must be propagated before the
end of the iteration of the loop, because otherwise y := 0 prohibits further
propagation. Hence, b := y must be executed before the end of the k’th loop
iteration after complete execution of y := x. After the kth loop iteration, the
value in b must be further propagated to c, which requires a second use of
y := x.

Note that this example exploits the synchronous termination of the par-
allel composition operator as well as the causality inherent in sequential com-
position.
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9.2.2 Propagating Runs of Exponential Length

The technique of the previous example can be iterated to construct a fam-
ily of processes that require exponentially long runs to exhibit a particular
dependence.

We inductively define processes Pi, i ≥ 0. These processes have the ability
to propagate from a variable ai to a variable ci. We will show below that the
shortest runs that do so have length Ω(2i).

i = 0: Process P0 is defined as c0 := a0. It plays the role of the instruction
y := x in the previous example; a0 corresponds to x and c0 to y.

i > 0: For i > 0, the process Pi relies on the ability of Pi−1 to propagate from
ai−1 to ci−1. The construction from Section 9.2.1 is used to enforce that
Pi−1 has to contribute two runs that propagates from ai−1 to ci−1 in any
run of Pi that propagates from ai to ci. For this purpose an intermediate
variable bi is used. The definition of Pi is this:

loop




ai−1 := bi;
ci := ci−1;

ai−1 := ai;
bi := ci−1;

ai−1 := 0


 ‖

(
Pi−1;
ci−1 := 0

)
end ; bi := 0

We now prove by induction on i that process Pi has a run that propagates
from ai to ci and that (for i > 0) any run of Pi that does so must include
at least two runs of Pi−1 that propagate from ai−1 to ci−1. This proves the
Ω(2i) claim for the length of shortest propagating runs. In order to enable an
inductive proof, the following additional property is proved simultaneously:
any run of Pi finally kills all variables that it assigns to except of ci, i.e.: if
a run r of Pi can be written as r = r0 · 〈x := e〉 · r1 with x �= ci and e �= 0,
then r1 can be written as r1 = r2 · 〈x := 0〉 · r3.

For P0 these properties are trivial. So suppose i > 0 and assume that
the properties are valid for Pi−1. Let r be a shortest run of Pi−1 with r !
(ai−1, ci−1). Then we can define a run s of Pi (with atomically executed
assignments) in analogy to the run considered in the previous example:

1. Iter.: ai−1 := bi, ci := ci−1, ai−1 := ai, r,bi := ci−1, ai−1 := 0, ci−1 := 0,
2. Iter.: ai−1 := bi, r, ci := ci−1, ai−1 := ai, bi := ci−1, ai−1 := 0, ci−1 := 0,
Finally: bi := 0

The parts in bold face show that s ! (ai, ci). Obviously, this run contains r
twice.

In order to see that any run s of Pi with s ! (ai, ci) necessarily contains
two runs of Pi−1, we argue similar to Section 9.2.1: as variable ai is read only
by the assignment ai−1 := ai, a propagating run must use this assignment
for propagation in some iteration of the loop, say in the k’th iteration. Before
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the k’th iteration of the loop ends, ai−1 must be read, because otherwise
propagation is prohibited by the execution of ai−1 := 0. This can only happen
in the second thread in a run r of Pi−1. By the induction hypothesis this
run kills all variables except ci−1 finally, and ci−1 is also killed explicitly
after the execution of Pi−1 before the k’th iteration of the loop ends. Thus,
successful propagation requires that r is a run that propagates to ci−1 and
that afterwards bi := ci−1 is executed. In order to propagate from bi to ci in
a later iteration of the loop, a further run of Pi−1 that propagates from ai−1

to ci−1 is needed.
It remains to show that all runs of Pi kill all the variables they assign to

except ci. This is easy to see from the corresponding property for Pi−1 and
the places of the assignments ai−1 := 0, ci−1 := 0, and bi := 0 in Pi.

These considerations justify the following conjecture.

Conjecture 9.2.1. For parallel programs, the intraprocedural copy-constant
detection problem does not belong to co-NP. The same holds for faint-code
elimination.

9.3 Summary

In this chapter we have seen that both detecting copy constants and elimi-
nating faint code are intractable problems, even if the assumption that base
statements execute atomically is abandoned. Both problems have been shown
to be co-NP-hard by means of a reduction from the SAT problem. Unlike the
reductions in (Chapter 4), this reduction applies under the assumption that
assignments execute atomically as well as when this assumption is aban-
doned. Moreover, we have exhibited a family of example programs in which
the length of shortest propagating runs is exponential in the program size.
This indicates that the lower bound, NP-hardness, probably can be improved
for the general intraprocedural problem as well as the interprocedural prob-
lem.



10. Conclusion

For fundamental recursion-theoretic reasons, program analyzers are doomed
to give only approximate answers. By applying abstractions to programs, we
can come to precisely defined, weaker analysis problems that can be solved
exactly. By classifying such problems with the means provided by the theory
of computational complexity, we hope to shed light on the trade-off between
efficiency and precision for approximate analyzers and to uncover potential
for more precise analysis algorithms.

In this monograph we studied various version of the constant propagation
problem. More specifically, our contributions are the following:

1. We characterized the complexity of constant detection for a three-dimen-
sional taxonomy of constants in sequential flow graphs on integer vari-
ables almost completely. The first dimension selects a subset of expres-
sions that are interpreted precisely. The second dimension distinguishes
between must- and may-constants ; may-constants appear in two varia-
tions: single- and multiple-valued. In the third dimension we distinguish
between programs with or without loops. May constants are related to
reachability.

2. We showed that detection of copy constants in parallel programs is un-
decidable, PSPACE-complete, and NP-complete if we consider programs
with procedures, without procedures, and without loops, respectively.
These proofs rely on the standard assumption that base statements ex-
ecute atomically. They reveal fundamental limits for precise analysis of
parallel programs.

3. We then abandoned this atomic execution assumption. Surprisingly, this
makes copy-constant detection decidable for programs with procedures
although it remains intractable (co-NP-hard). Similar statements can be
made for faint-code elimination. In order to show decidability we worked
out a precise abstract interpretation of sets of runs (program executions).
The worst-case running time of this algorithm is exponential in the num-
ber of global variables but polynomial in the parameters describing the
program size.

From a practical perspective, our most interesting findings concern po-
tential for the construction of algorithms. In the sequential case, we find that
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polynomial constants are decidable and that Presburger constants can even
be detected in polynomial time. In the parallel case we could show that prob-
lems that are undecidable under the standard idealization of atomic execution
are in the reach of algorithmic techniques if more realistic atomicity assump-
tions are adopted. This in particular holds for the fundamental problem of
exact dependence analysis. While further work is necessary to construct al-
gorithms that are efficient enough to be of practical use, our findings open
up potential for interesting future work.

The worst-case running-time of the algorithms in Chapter 8 is exponential.
Unfortunately, already the elementary operations are expensive, in particular
the abstract interleaving operator, such that we cannot hope that they would
perform well in practice if the number of variables is large. Nevertheless, we
believe that refinements of the technique underlying dependence traces can
lead to practically interesting algorithms with acceptable performance and
superior precision. Let us discuss possible targets for improvements.

While the running time of the algorithms is exponential in the number
of program variables, it is polynomial in the program size; cf. Theorem 8.3.1.
Hence, if the number of program variables is bounded, they are polynomial-
time algorithms. For a practical algorithm it is thus essential to keep the
number of the variables that are used in dependence trace construction small.
In order to keep the technical treatment manageable, we do not distinguish
between local and global variables of threads and procedures in the current
exposition. All variables are global and all of them are visible to each thread.
Therefore, we must include all variables into the precise interference analysis
provided by dependence traces. In practice, however, most variables are local
to threads and there are only a few global variables on which interference
can happen. A practical algorithm should take advantage of the distinction
between local and global variables. The idea is to design a combined analysis
that applies the expensive interference reasoning via dependence traces only
to really shared variables and uses a cheap sequential technique for propa-
gation via other variables. Analysis with respect to such a domain promises
to be exponential only in the number of global variables, which is probably
small in practice.

We should also strive for a compact representation of the values in the
abstract domain AD. Each value comprises a set of variables T and an an-
tichain of short dependence traces D. The set T may straightforwardly be
represented by a bit-vector. It is less clear, however, how to represent the an-
tichain D adequately. Storing all the dependence traces in D explicitly, e.g.,
in a linked list, is probably not a good solution, because D can be large and
there is much redundancy. The run 〈b := a, d := c, f := e〉, for instance, has
the dependence trace τ = (1, 〈(a, b), (c, d), (e, f)〉, 1) but also the dependence
traces (1, 〈(a, b), (c, d)〉, 1), (1, 〈(a, b)〉, 1) and many others. In a certain sense
the latter dependence traces are implied by τ except of the transparency bits.
We should use a representation that employs sharing to compactly represent
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Fig. 10.1. A lattice for constant propagation.

all these dependence traces by a structure that is not much larger than τ
alone and that allows a cheaper computation of the composition operators.

In flow analysis of sequential programs we mostly propagate informative
values through the program. In constant propagation, for instance, we use
values of a lattice like the one in Figure 10.1. The dependence traces do-
main, however, is a rather pure domain that treats interference in isolation.
It is fitted to the computation of dependences only. Although it allows us to
solve problems like copy-constant detection and faint-code elimination, the
approach is indirect via bridging runs and involves even an iterated compu-
tation of dependence traces in the case of faint-code detection. It is inter-
esting to invent and study more complex abstract domains that work with
more informative values but rely on the idea of dependence traces to come
to grips with interference. Ideally, such domains should be obtained by a
modular extension of the dependence traces domain in order to isolate the
interference-related reasoning from other semantic questions.

10.1 Future Research

Let us discuss some ideas for future research.

Complete the hierarchy of constants. An obvious target for future research are
the two questions that remain open in the hierarchy of constants of Chapter 2:
(1) we miss an upper bound for linear may-constants and (2) the upper
and lower bound for polynomial must-constants do not coincide. Currently,
we have decidability as an upper bound, as witnessed by the algorithm in
Chapter 3, and PSPACE-hardness as a lower bound.

Investigate interprocedural hierarchy. It is interesting to study the hierarchy
of constants in Chapter 2 also in sequential programs with procedures, i.e.,
the interprocedural problem. While we now know that Presburger constants
can interprocedurally still be detected efficiently [65], it is an open problem
whether polynomial constants remain decidable. In view of the negative re-
sults of Chapter 4 and 9 already for the weakest class of constants, copy
constants, it is less interesting to generalize the results to parallel programs.
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Research towards more practical analysis algorithms. Concerning analysis of
parallel programs the dependence traces domain proposed in this monograph
is only a first step. We do not expect that the algorithms in Chapter 8 run
satisfactorily in practice. We believe, however, that variants of the dependence
traces techniques can well lead to algorithms with acceptable performance
and superior precision. The next three points mention again the possible
targets for improvements that have already been motivated and discussed in
more detail above.

Take advantage of local variables. We would like to study algorithms that
take advantage of the distinction between local and global variables. The
expensive dependence traces technique should be applied only to global vari-
ables and local variables should be treated by much cheaper sequential tech-
niques. The two propagation methods must be intertwined because both types
of variables can contribute to propagate information to a certain point in the
program. This may make the resulting algorithms rather complicated.

Represent antichains compactly. It is important to find a compact represen-
tation of antichains of dependence traces on which the abstract operations
can be computed more efficiently than on an explicit representation.

Specialized domains. It is worth inventing domains that work with more in-
formative values than dependence traces. Such domains should enable us to
perform, e.g., copy-constant detection by means of an abstraction of reaching
runs rather than bridging runs. Thus, they would reveal closer connections to
traditional analysis of sequential programs. Note, however, that in itself this
does not imply a gain in efficiency (with respect to asymptotic running time)
because the constraint systems for reaching runs and bridging runs both have
O(|Proc| · |N |) constraint variables and O(|N | · |E|) constraints.

More realistic programming languages. We should also consider application
of the dependence traces technique to more realistic programming languages.
In this monograph we studied the prototypic scenario of non-deterministic
parallel flow graphs. Generalization to practical languages may lead to addi-
tional interesting problems.

Weak memory consistency models. Many modern implementations of multi-
threaded programs provide only a weak memory consistency model that al-
lows the implementation to change the order in which writes from one thread
are observed in other threads [1, 75, 80, 48]. The reason is that weaker as-
sumptions about the memory enable a multitude of software and hardware
optimizations. A weak memory consistency model is another reason besides
non-atomicity, why the idealistic atomicity assumptions adopted in classic
program verification and in our reductions in Chapter 4 are unrealistic. We
conjecture that the dependence traces abstraction is sound and complete also
under most if not all weak memory consistency models. This would emphasize
the importance of dependence traces.



A. A Primer on Constraint-Based Program
Analysis

Constraint-based program analysis provides a framework for developing anal-
yses and arguing about their correctness and completeness. In this chapter we
describe the idea underlying constraint-based program analysis. As a running
example we use forward dataflow analysis in (non-procedural, sequential) flow
graphs and consider constant propagation in particular.

Definition A.0.1. A flow graph is a structure G = (N, E, A, s, e) with node
set N , edge set E ⊆ N ×N , a unique start node s ∈ N , and a unique end
node e ∈ N . The mapping A : E → Asg ∪ {skip} associates each edge with
an assignment statement x := e ∈ Asg or with the statement skip. Edges rep-
resent the branching structure and the statements of a program, while nodes
represent program points.

Program analysis problems are concerned with answering questions about
certain sets of runs. A run is a sequence of atomic action; in a sequential
context we can think of an action simply as an edge of the flow graph. A
forward dataflow analysis, for instance, is concerned with the runs that reach
program points from the start point of the program.

Definition A.0.2. Let G =(N, E, A, s, e) be a flow graph and w ∈ N a
program point. A run reaching w is a sequence of edges 〈e1, . . . , ek〉 with
ei = (ui, vi) ∈ E such that u1 = s, vk = w, and vi = ui+1 for 1 ≤ i < k . In
addition ε, the empty sequence, is a run reaching s, the start node. We write
R[u] for the set of runs reaching u.

In constraint-based program analysis, we first set up a system of subset
constraints that characterize the run sets of interest. Each constraint takes
the form

Xi ⊇ E(X1, . . . , Xk) ,

where the variables Xi represent the run sets of interest plus, perhaps, some
additional auxiliary run sets, and E(X1, . . . , Xk) is a term in these variables
that denotes a monotonic mapping on run sets. We can have more than one
constraint per variable. It follows from the Knaster-Tarski fixpoint theorem
[90] that such a constraint system always has a smallest solution. We choose
the constraints such that their smallest solution comprises just the run sets of
interest. This is meant by saying that the constraint system characterizes the
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run sets. Throughout this monograph, we obey the following convention: run
sets of interest are denoted by letters in sans serif font and the corresponding
variables in constraint systems by the same letter in italic font.

Let us consider as an example a constraint system for the reaching runs
in a flow graph. We have one variable R[u] for each program point u ∈ N
that represents R[u] and no auxiliary variables. The characterizing constraint
system for reaching runs has a special constraint for the start node

[1] R[s] ⊇ {ε}

and one constraint for each edge e = (u, v) ∈ E:

[2] R[v] ⊇ R[u] · {〈(u, v)〉} .

It is easy to see that the family (R[u])u∈N of sets of reaching runs satisfies
all these constraints. It is moreover not hard to prove by induction on the
length of runs that if (Fu)u∈N is a family of run sets that solves this constraint
system, then any run that reaches u must be contained in Fu. Together this
implies that the smallest solution of this family of inequalities over run sets
is indeed the family of sets of reaching runs.

On the right hand side of constraints, certain run sets and operations on
run sets are used. We may conceive the constraint system abstractly as a
system over a certain signature Sig = (C, O) consisting of a set of constants
C and a set of operator O, where each operator o has an associated arity
ar (o) ∈ N.

In the constraint system for reaching runs, for instance, the signature
consists of one constant cε and a unary operator oe; the constraint system is
this:1

[1] R[s] � cε

[2] R[v] � oe(R[u]) , if (u, v) ∈ E

An interpretation I of the signature comprises a complete lattice (D,�)
and an assignment of a value I(c) ∈ D to each constant c and an (n-ary)
operations I(o) : Dn → D to each n-ary operator o.

In the standard or concrete interpretation I, D is the power set of the set
of runs, D = 2Runs, the order is subset inclusion, �=⊆, and the interpretation
of the constants and operators is as in the concrete constraint system. Thus,
the least solution of the constraint-system comprises the run sets of interest.
The concrete interpretation for the signature underlying the reaching runs

1 The reader may consider it more natural to read the second constraint as

[2′] R[v] � R[u] ; ce , if (u, v) ∈ E

where ce is a constant and ; is a binary operator. While this alternative interpre-
tation is legitimate in principle, it does not lead to an efficient intraprocedural
analysis algorithm.
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Fig. A.1. Hasse diagram of the co-flat order on Z ∪ {�}.

in flow graphs, for instance, is this: I(cε) = {ε} ∈ 2Runs for constant cε and
I(oe) = (λR : R · {〈e〉}) ∈ (2Runs → 2Runs) for unary operator oe.

In constraint-based program analysis we obtain the analysis result by
solving the constraint system over an abstract lattice (D#,�#) and a non-
standard or abstract interpretation I# of the constants and operators over
(D#,�#). Typically, D# is a finite-height lattice such that the constraint
system can be effectively solved by standard fixpoint iteration.

In order to specify a forward dataflow analysis, we choose a finite-height
lattice (D#,�#) of dataflow facts and a value d0 ∈ D# that represents the
fact valid at the start of the program, and associate with each flow graph
edge e a monotonic transfer function [[e]]# : D# → D# that describes the
effect of execution of edge e on dataflow facts. Often the latter is given via
the annotation of edges by statements. The members of D# represent, de-
pending on the specific analysis, potential run-time properties of program
points. The order, �#, captures information contents: smaller values repre-
sents more accurate (more precise) information. In particular, the top value,
�D# , represents absence of information. Note that our interpretation of the
order is dual to the traditional one.

Example A.0.1 (Simple constant propagation). Let us discuss so-called sim-
ple constant propagation. Here the lattice is Dsc = (Var → (Val∪{�}))∪{⊥},
where Var is the set of variables occurring in the program and Val is the set
from which variables draw their value at run-time.2 ⊥ is an artificial bottom
element that is added in order to make Dsc a complete lattice. The other
values are abstract states d : Var → (Val ∪ {�}). An abstract state assigns
to each variable x ∈ Var either a value c ∈ Val—in this case x is guaranteed
to be a constant of value c—or the special value �—in this case x’s value at
run-time is unknown.

The order on Dsc is defined as follows: ⊥ � d for all d ∈ Dsc and, for
abstract states d, d, d � d′ iff for all x ∈ Var , d′(x) = � or d(x) = d′(x).
That is, the order is the lift of the co-flat order on Val ∪ {�} extended by
⊥ as a bottom element. The co-flat order on Val ∪ {�} is illustrated by the
Hasse diagram in Fig. A.1 for Val = Z.

The initial value is d0 = (λx : �)—at the start of the program we have
no knowledge about the value of the variables.

The transfer functions are induced by the statements: [[e]]# = [[A(e)]]sc,
where [[skip]]sc(d) = d, i.e., [[skip]] is the identity on Dsc, and [[x := e]]sc
2 For simplicity, we assume that all variables have the same type.



168 A. A Primer on Constraint-Based Program Analysis

is defined by [[x := e]]sc(⊥) = ⊥ and [[x := e]]sc(d) = d[x �→ ed] for abstract
states d. The standard way of defining ed, the value of expression d in abstract
state d, is by extending the standard interpretation of operators from Val to
Val ∪ {�} in a strict way, i.e., such that each operation yields � if any of its
arguments is �.3 ��

The entities that specify a forward dataflow analysis induce a non-
standard interpretation of the signature underlying the constraint system for
reaching runs: the interpretation works on the lattice (D#,�#) of dataflow
facts; constant cε is interpreted by I#(cε) = d0, and the operator oe by
the transfer function associated with edge e: I#(oe) = [[e]]#. The smallest
solution of the constraint system for reaching runs over this non-standard in-
terpretation can effectively be computed by fixpoint iteration. It is called the
MFP-solution in dataflow analysis parlance. We denote the value computed
for variable R[v] by MFP[v] for each v ∈ N .

Example A.0.2 (Simple Constant Propagation). If, for the simple constant
propagation framework, MFP[v] �= ⊥ and MFP[v](x) = c ∈ Val then x is
called a simple constant of value c at program point v. ��

The theory of abstract interpretation allows us to argue that the non-
standard interpretation gives us the desired analysis result. For this purpose,
we define first an abstraction function α : D → D# that describes the in-
tended relationship between the concrete interpretation I and the abstract
interpretation I#. In the standard setting this amounts to a relationship
between run sets and analysis results.

We call α a weak homomorphism of the two interpretations I and I# if

1. α(I(c))�#I#(c) for any constant c ∈ C and
2. α(I(o))(d1, . . . , dk)�#I#(o)(α(d1), . . . , α(dk)) for any k-ary operator o ∈

O and values d1, . . . , dk ∈ D.

Alternatively, we say in this case that the abstract operators and constants
are correct abstractions of the concrete ones. Intuitively, α is a weak ho-
momorphism if a computation on abstractions yields sound but maybe less
accurate abstractions than a computation on concrete values.

We call α a strong homomorphism if 1. and 2. hold with = in place of �#.
Alternatively, we say that the abstract operators and constants are precise
abstractions of the concrete ones. Intuitively, α is a strong homomorphism
if we get the same abstract information by computing on abstractions and
concrete values.

A function f : L → L′ between complete lattices L and L′ is called
distributive (universally disjunctive) if it distributes over arbitrary joins, i.e.,
if f(

∨
S) =

∨{f(l) | l ∈ S} for all S ⊆ L.
3 For some operators, we could use a non-strict interpretation, if other arguments

determine the value of the operation uniquely. For example, we could define that
0 · � = 0.
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For any variable X used in a given constraint system, let Xc ∈ D be the
value assigned to variable X in the smallest solution over concrete interpre-
tation I and Xa ∈ D# be the value assigned to X in the smallest solution
over abstract interpretation I#. Then the crucial theorem can be formulated
as follows:

Theorem A.0.1. Suppose α is distributive.

1. If α is a weak homomorphism then α(Xc)�#Xa.
2. If α is a strong homomorphism then α(Xc) = Xa. ��

In forward dataflow analysis the relationship between the standard and
the abstract interpretation is given by the MOP-abstraction. MOP stands
for “Meet Over all Paths”. As our interpretation of the order is dual to the
traditional one we define it here as a “join over all paths”. Nevertheless, we
use the term MOP that is very well-established in the literature.

In order to define the MOP-abstraction, the local interpretation [[e]] : D →
D of flow-graph edges is extended to runs by the natural definition

[[〈e1, . . . , ek〉]] def= [[ek]] ◦ . . . ◦ [[e1]] .

In particular, [[ε]] = (λd ∈ D# : d), the identity on D#. Obviously, the
information valid after execution of a particular run r is given by [[r]](d0).
The MOP-abstraction is now defined as αMOP : D → D#:

αMOP(R) def=
⊔
{[[r]](d0) | r ∈ R} .

With this definition, we clearly have

αMOP(R[v]) = MOP[v] def=
⊔
{[[r]](d0) | r ∈ R[v]} .

That is, the set of reaching runs to v is abstracted to what is commonly called
the MOP-solution in dataflow analysis, where it is used as the specification
of what the analysis tries to compute or approximate. The intuition is that
MOP[v] is the most precise abstract information we can guarantee whenever
execution reaches program point v: we must be prepared to see any of the
runs r ∈ R[v]; the best we can say after a specific run r is [[r]](d0); and the
most precise value consistent with all these values is their join. Therefore, a
sound analysis must compute for program point v a fact f with MOP[v]�#f ,
preferably f = MOP[v].

Example A.0.3 (Simple constant propagation). For the simple constant prop-
agation framework, MOP[v] �= ⊥ for each reachable program point v ∈ N .
Let us assume that v is indeed reachable. If x is a constant of value c ∈ Val at
program point v, i.e., holds c whenever execution reaches v, MOP[v](x) = c.
Otherwise, MOP[v](x) = �. Therefore, the MOP-solution of the simple con-
stant propagation framework is a perfect reference point for judging sound-
ness of constant propagation algorithms. ��
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1
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z := x + y

y := 3
x := 2 x := 3

y := 2

Fig. A.2. Non-distributivity of simple constant propagation.

It is not hard to prove that the MOP-abstraction is distributive. Further-
more, if all transfer functions [[e]] are monotonic, a very natural assumption
we have made above, αMOP is a weak homomorphism. By Theorem A.0.1
this means that the constraint-based analysis delivers sound results, a classic
theorem by Kam and Ullman [38].

Theorem A.0.2 (Monotonic frameworks). If all transfer functions [[e]],
e ∈ E, are monotonic then MOP[v]�#MFP[v] for all v ∈ N . ��
Example A.0.4. Theorem A.0.2 implies, in particular, that simple constant
propagation yields sound results. If MFP[v](x) = c ∈ Val for a program
point v ∈ N and a variable x ∈ Var , we can infer MOP[v](x) = c because
MOP[v] � MFP[v]. Therefore, x is indeed a constant of value c in this case.
However, if MFP[v](x) = � we cannot infer anything. ��

Ideally, we would like that MOP- and MFP-solution coincide. Indeed, if we
pose stronger requirements on the transfer functions we obtain such a result:
it is not hard to show that αMOP is a strong homomorphism if all transfer
functions [[e]] are universally disjunctive (distributive) and by Theorem A.0.1
this implies that the constraint-based analysis computes exactly the MOP-
solution in this case. Thus, we obtain the classic theorem of Kildall [40]
ensuring soundness and completeness of the MFP-solution for distributive
frameworks.

Theorem A.0.3 (Distributive frameworks). If all transfer functions [[e]],
e ∈ E, are distributive then MOP[v] = MFP[v] for all v ∈ N . ��

The transfer functions in simple constant propagation are not distributive
as illustrated by the program in Fig. A.2: while the MOP-solution assigns
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the value 5 to z at node 7, the MFP-solution loses precision at node 6 by
assigning � to both x and y at node 6. Hence, the MFP-solution assigns the
sound but imprecise value � to z at node 7. The reason is that [[z := x + y]]sc,
the transfer function assigned to edge (6, 7), is non-distributive. Let us write
[a, b, c] with a, b, c ∈ Val∪ {�} for the abstract state that assigns a to x, b to
y, and c to z. Then

[[z := x + y]]sc([2, 3,�] � [3, 2,�]) = [[z := x + y]]sc([�,�,�]) = [�,�,�]

but

[[z := x + y]]sc([2, 3,�]) � [[z := x + y]]sc([3, 2,�]) = [�,�, 5] �= [�,�,�] .

It is possible to define distributive frameworks for constant propagation.
A well-known example is copy-constant propagation in which composite ex-
pressions are not interpreted at all.

Example A.0.5 (Copy-constant propagation). In copy-constant propagation
we use the same lattice as in simple constant propagation, the same order, and
the same initial value. We modify, however, the transfer functions: composite
expressions are no longer interpreted. Specifically, we define for composite
expressions e, [[x := e]]cc by [[x := e]]cc(⊥) = ⊥ and [[x := e]]cc(d) = d[x �→ �].
For all other base statements s, [[s]]cc = [[s]]sc. Note that besides of skip, only
constant and copying assignments x := v, where v is a constant or variable,
are interpreted, hence the name copy-constant propagation.

It is not hard to prove that the transfer functions of the copy-constant
framework are universally disjunctive, Therefore, the MFP-solution of the
copy constant propagation framework coincides with the MOP-solution. Of
course we pay a price for this coincidence. The MOP-solution of the copy
constant propagation framework no longer captures constancy at run-time
precisely. In contrast to the MOP-solution of the simple constant propagation
framework, it is itself a conservative approximation only. ��

There is no deep fundamental difference between the classic approach to
dataflow analysis, which relies on equations, and the constraint-based ap-
proach that relies on inequalities. However, the constraint-based approach
enables a more modular specification, as in any single inequality we can con-
centrate on one particular phenomenon, why a certain dataflow information
must be weakened. An equational specification, on the other hand, forces us
to consider all of them at the same time. Therefore constraint-based speci-
fications are often clearer, in particular in more complex scenarios than in-
traprocedural analysis of sequential flow graphs like analysis of parallel flow
graphs.
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